1: About the A+ Reference Manual

Chapter 1. About the A+ Reference Manual

Thismanual isintended mainly for reference. It coversthelatest releases of A+ Versions2 and 4, differences
between the versions being highlighted in the text. For differences between the latest release and earlier
releases of aversion, see the release notes, at http://saseol/aplus/releasenotes.html or as
sent by email to the aplus group. For asummary of the differences between any two releases, see “Differ-
ences between selected releases’, on the same page.

When it is obvious that something must bein Version 4 only, that fact is sometimes not stated: for example,
for attributes that apply only to the notebook class, which is new (and stated to be new) in Version 4.

The printed A+ Reference Manual consists of three volumes, A+ Language Reference, A+ Screen Interface,
and A+ Extensions and Tools. Theindexesthat appear in each of these volumes areidentical except for page
entry prefixes identifying referencesto the other volumes. This introduction applies to the entire manual.

Theweb version, for Netscape Navigator 4.0 (or equivalent browser), isat http://saseol/aplus . Be
sureto follow the instructions there for displaying the special APL characters.

Other Sources of | nformation

The web version has links to the A+ home page, the rel ease notes, and a page from which you can obtain a
list of the differences between any two releases. The home page tells about the aplus news group, and it and
pages linked to it list various A+ documentation.

Organization

Because this manual isintended mostly for reference, the primitive functions, operators, system functions,
system variables, and commands are listed alphabetically. In the body of the manual, they are al phabetized
by their English names, i.e., names such as Add, Rank, Expunge, Print Precision, and Load. Many chapters
have tables of contents at the beginning, showing English and A+ names, and (in the printed version) page
numbers where the entries are defined; where the A+ names are al phanumeric except perhaps for aleading
symbol, thesetables are usually al phabetized by A+ name, giving you two a phabetic waysto look something
up withinachapter. “ Display Attributes’, page S-37, hasatablelisting all attributes al phabetically, with brief
descriptions and pointers to other chapters where appropriate.

When you are starting with the A+ name—e.g., +, @_ex, ‘pp , $load —and don’t know what chapter itis
in, you can consult the index (see next section) or “Quick Reference”, page 225. Thefirst table there liststhe
symbolsfor the primitive functions and operators, ordered by category (arithmetical, logical, structural, and
S0 0on), gives the corresponding names, and indicates the chapters in which they are described. A symbol’s
dyadic definition has been preferred to its monadic definition where the two would dictate different catego-
ries. The next three tables are al phabetized by A+ name and give the corresponding English names.

Many other tables in this manual, however, do not include references to extended discussions of the items
listed in those tables, because of space, (automatic) footnote placement, or other considerations. To find addi-
tional information about an item in such atable, look up theitem in the index.

The Index

In the online version, an index or cross reference link points to the beginning of a paragraph, whichis placed
at thetop of theframe (if enough text follows). In the printed version, across reference page number always
refersto the beginning of a paragraph and a page number in the index usually does; when one does not, it

refersto aword or phrase that isinitalics, bold face, or other font that stands out from the surrounding text.

All system commands, system functions, and system variables are listed in the index under these three head-
ings, intheir A+ forms. They are listed separately under their English names, aswell. Primitive functions

8 Adobe Acrobat Test of the A+ Language Reference Manual November 2000

1: About the A+ Reference Manual

and operators are each listed under one or more English names. The A+ specia characters are listed in the

Symbolssection of theindex, and can befound (with references) in“ Quick Reference”, asalready mentioned,
and in tables at the beginnings of the chaptersin which the functionsthey represent are defined. Inthe printed
version, these tables give for each symbol the number of the page on which its definition appears.

Theindex includes entries for commonly used alternate names of primitive functions and operators; such an
entry includesthe name used here, in parenthesis, and the page number for the function or operator definition.
The entry constitutes a see reference, while saving you the nuisance of |ooking el sewhere in the index when
all you want isthe principal reference for the function. Entries for certain other terms are of thisform.

Terms

Datatypeand general type: Thereare seven datatypesin A+: character, integer, floating point, null, box,
symbol, and function. Theterm integer isalways used in this manual inthis strict sense, to indicate not only
adomain of values but also a particular internal representation, the one identified by the A+ type integer

(‘int ,astheTypefunctioncallsit). Integral andintegral value also refer to both domain and representation.

Theterm restricted whole number isused to refer to any representation, integer or floating point, of amember
of theintegral domain of values—the values for which integer internal representation is possible. The float-
ing point representationsin the set of restricted whole numbers need only be equal to integers within the
comparison tolerance or belessthan 1e-13 in absolutevalue. See* Comparison Tolerance”, page 105. (Put
another way, ascalar x isarestricted whole number if either (1) 'x is‘int or(2)'x is‘float andeither
“x islessthan 1e-13 orthereisay suchthat x=y island'y is‘int .) The chief significance of thiscon-
cept, of course, isthat any floating point representation that represents arestricted whole number can always
be faithfully coerced to an integer representation. All empty arrays are included in this set, as discussed
below.

Many A+ functions and operators take arguments of several types, sometimes with somelimitation, and itis
convenient to divide A+ data objects into three classes, asthey do. These classes are called general types:

» character, consisting of ssmple arrays of characters;
» numeric, consisting of simple arrays, unrestricted as to value, of floating point numbers and integers;
» mixed, containing all other data, namely:

» simple arrays of functions and symbols; and

« al nested arrays: box, function, and symbol.

Because the set of restricted whole numbers and the general types are used mostly to indicate inclusion in the
domains of functions, and because most functions accept empty arrays of any type, all empty arrays are
included in the definition of restricted whole numbers and in each general type. For efficiency, the (empty)
result of amathematical function for aNull iswhatever ismost convenient for the function: Null, integer, or
floating point.

These words are used in the obvious ways, such asin the terms symbol array or symbolic array or array of
symbols, meaning an array every element of which has data type symbol, and numeric array, meaning an
array that has no elements or has only elements whose data type is integer or has only elements whose data
typeisfloating point. The more elaborate term array of type symbol, on the other hand, means only that the
first item of the array is of type symbol —i.e., the first item of the first item of ... the first item is a symbol;
the other items of the array can be of types symbol, function, or box.

Origin: A+ enumerates lists and whatnot using the integers 0, 1, 2, ...; that isto say, A+ employs 0-origin
indexing. Thismanual usesi-th, for any letter i, in the same sense, to agree with A+. Thewordsfirst, second,
third, and so on, however, are intended to convey their ordinary English meanings. Hence if an element of
some list is spoken of as the third element and also as the n-th element, then n hasthe value 2. Digitsare
never used in such a construction: 0-th, 2-th, and so forth never appear again in this manual.

A+ Language Reference November 2000 9

1: About the A+ Reference Manual

10

Comparison: A+ makes some comparisons using atolerance. When two objects are equal within the tol-
erance, they are called tolerably equal. Thisterm isalso used in a more general way, to mean egqual within

the tolerance for those objects to which the tolerance applies and strictly equal for all others. Tolerably equal

issaid only with regard to comparisons that employ the tolerance under some circumstances.

Namesand values: If the name x hasthe value 2 associated with it, one normally says simply that x is 2.
Thismanual follows that or asimilar usage, usually even in more complicated cases. For example, suppose
g isthe name of afunction and the value associated with x is‘g , the symbol form of the name g; the manual
may simply say that x isafunction. If x hasthevalue™g" , whichisacharacter string that givesthe display
form of the symbol form of the name g, the manual may simply say that x names g when, say, X isan argu-
ment and its role is to supply the name of afunction.

Notation

The conventions adopted for the use of APL font, capitalization, backquote, and quotation marksin this book
are intended to promote simplicity, readability, and clarity.

APL font

(1) The A+ names of system variables and functions, A+ commands, A+ defined functionsand variables, and
the s functions (the screen management functionsis , show, etc.) and, of course, the A+ primitive function
and operator symbols always appear in APL font.

(2) All multicomponent A+ expressions appear in APL font, except that ‘name and 'name’ sometimes
appear asjust name, in ordinary text font, as discussed below.

(3) The A+ keywords (if, do, etc.) appear in APL font in multicomponent A+ expressions, as required by (2),
but are shown in ordinary text font elsewhere—here, for instance.

(4) Numbers normally appear in ordinary text font. APL font is used for them, however, in these cases:
(a) the number is part of alarger A+ expression, so rule (2) applies,
(b) the number is explicitly an entry or display in an A+ session;
(c) the same number or an associated number occurs nearby in a setting
that requires APL font, so consistency dictates the use of that font;
(d) the number is expressed in aform peculiar to A+ (as distinct from mathematics or ordinary
English), asin2.78e-4 .

(5) Names of attributes (for screen management) and names of the valuesthat attributes can have arenormally
set in ordinary text font when they occur alone, but where a particular value is being explicitly given for an

attribute, asin the “ Default” column of atable, it may appear in APL font, together with a backquote or quo-
tation marks, e.g., ‘center , 'kaplgallant’

Backquote

Thebackquote (*) isused only for system variables and where the context explicitly requiresasymbol. Thus,
inthe “Attribute” column of atable only names appear (e.g., titlefg), and of course the response to “show
‘b " isdescribed as“b isdisplayed.”

Capitalization

The English names of the A+ primitive functions and operators, as contrasted to their symbols, and of the
system functions, variables, and commands always appear in ordinary text font, with an upper-caseinitial let-
ter and sometimes another upper-caseinitial: Plus, Grade up, Pi times, Natural log, Value in Context, Less
than or Equal to, Inner Product, Set Attribute, Random Link, Global Objects, and so on.

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

2. Overview of A+

Chapter 2. Overview of A+

Summary of the A+ Programming L anguage

A+ isan array-oriented programming language that provides
* arich set of primitive functions that act efficiently on arrays
* general operators that control the ways functions are applied to arrays.

In A+, the ordinary concept of arrays has been enhanced to provide
» ameans by which files can be treated as ordinary arrays

* avariety of simple, straightforward ways of displaying and editing data on a screen, with automatic
synchronization between displayed data and the contents of variables

* generalized, spreadsheet-like interactions among variables.

These features are realized in A+ by furnishing global variables with
« the attribute of being specific to one A+ process or more generally accessible
« visual attributes such as font and color, analogous to the ordinary attributes of shape and type
« asynchronous execution of functions that have been associated with variables and events
» definitions describing the spreadsheet-like relations among their values.

Global variables with associated definitions involving other global variables are called dependencies. The
values for an interrelated set of dependencies are automatically kept as current as needed: if an object
changes, any variable that is dependent upon it is recalculated just before that variable's next use. Although
these spreadsheet-like relations are not new in principle, the definitions on which they are based can employ
thefull A+ programming language. In particular, the spreadsheet concept of acell isnot restricted to ascalar
in A+, but can beany array, so that much more data can be managed by theserelationsthan isusual for spread-
sheets, and more efficiently. Similarly, the spreadsheet paradigm is not limited to numeric relations. For
example, the concept of aview in arelational database can be realized as a dependency on the source data.

Other A+ features are
* conventional control structures
* contexts, or separate namespaces, in a single workspace
« dynamic linking of C functions, which can be called like ordinary A+ defined functions
» aUnix operating system environment
» XEmacs as the application devel opment environment
* asynchronous communication between processes, based on A+ arrays.

Some Features of the A+ Language

The primitivefunctionsof A+, avariant of APL, can be classified asscalar, structural, or specialized. A scalar
primitiveis applied independently to the individual elements of its array arguments, but syntactically it can
be applied to an entire array, providing a very efficient implicit control structure. The scalar primitives

include the ordinary arithmetic functions, comparison functions, logical functions, and certain other mathe-
matical functions. A structural primitive is one that can be defined completely in terms of the indices of its
right argument: it rearranges or selects the elements of that argument but otherwise leaves them unmodified.
The specialized primitive functions include, for example, ones for sorting arrays and inverting matrices.

L eading Axis Oper ations

Most A+ structural primitive functions, and functions derived from the operators called Reduce and Scan,
apply to the leading axis of the right argument (cf. “ The Structure of Data”, page 16). These structural A+
primitives are Catenate, Take, Drop, Reverse, Rotate, Replicate, and Expand. The subarrays obtained by

A+ Language Reference November 2000 11

2. Overview of A+

» specifying only the leading axis index, and

» specifying it to be asingle, scalar value
are called the items of the array. Another way to say that a structural function applies to the leading axisis
to say that it rearranges the items, but not the elements within the items.

Rank Operator

The concepts of leading axis and item are generalized by treating an array as aframe defined by the array’s
leading m axes holding cells of rank n defined by the array’ strailing n axes, where m+n is the rank of the
array. A functionf isapplied to all cells of rank n with the expression f@n. The rank operator (@ applies
uniformly to all functions of one or two arguments: primitive, derived, or defined, except Assignment and
(because of its syntax) Bracket Indexing (@ does apply to Choose, which is semantically eguivalent).

Mapped Files

Mapped files are files accessed as simple arrays. These files can be very large (currently of the order of a
gigabyte). Only the parts of afile that are actually referenced are brought into real memory, and therefore
operationsthat deal only with parts of filesare particularly efficient. Unlessthefilesare extremely large, the
transition from application prototypes dealing with ordinary arrays to production applications using mapped
files requires only minimal code modification.

Screens and Wor kspaces

Screens show views of arrays. A workspace is where computation takes place and where all immediately
available A+ objects reside—variables, functions, operators, and so on. An array can be displayed on a
screen with the show function. The array in the workspace and the screen view share the same storage.
Changesto the array in the workspace are immediately reflected on the screen. Changes can be made to the
screen view of the array, and they immediately change the array in the workspace. (The word workspaceis
also used in a different sense in screen management, to denote the leading top-level window.)

Callbacks

Callbacks are automatic invocations of functions that have been associated with variables and events. Spec-
ification of avariable or selection of arow in its screen display, for example, can trigger the execution of a
callback function. Callbacks provide a complete means of responding to asynchronous events.

Dependencies

Dependencies are global variables with associated definitions. When a dependent variable is referenced its
definitionwill beevaluatedif, generally speaking, any objectsreferenced in the definition have changed since
itslast evaluation. Otherwise, itsstored valueisreturned. Thus dependencies, like functions, aways use the
current values of the objects they reference, but are more efficient than functions because they do not reeval-
uate their definitions until at least one referenced object has changed.

Contexts

Utilities and toolkits can be included in applications without name conflicts, by using contexts, which allow
utility packages and toolkits to have their own private sets of names. Outside a context, names within are

referred to by qualifying them with the context name. System commands and system functions provide facil-
ities for working with contexts, such as changing the current context and listing al contextsin the workspace.

Some Features of the A+ System

Unix, Al X, and Linux Environments

A+ operates under various forms of Unix, AlX, and Linux. A+ processes can be started from a shell or an
Emacs or XEmacs session. Hereafter, “Emacs’ means Emacs or Xemacs here. Emacs provides the applica

12 Adobe Acrobat Test of the A+ Language Reference Manual November 2000

2. Overview of A+

tion development environment for A+. Y ou can work in desk cal culator modein an A+ process started under
Emacs. In this mode the user’s view of the A+ processis an interactive session, where expressions can be
entered for evaluation, and results are displayed. A session log is maintained, and can be referenced during
the A+ session and saved at any time. Desk calculator mode is aso the default for an A+ session startedin a
shell, but these A+ sessions are more commonly used for running applications with desk calculator mode
turned off. If an application fails, appropriate entriesto alog file can be written, or the A+ process can be
returned to desk calculator mode for debugging. An A+ process can communicate with other processes, A+
or not A+, through a communications interface called adap (see* Interprocess Communication: adap”, page
E-7).

Emacs Programming Development Environment

The A+ mode in Emacs provides programmers with very effective ways of testing and debugging applica-
tions. Programmers usually work with two visible buffers, one containing an A+ process and the other the
source script of an application. Function keys provide the means to move either asingle line from the script
to the A+ process, where it is automatically executed, or an entire function definition. It is also possible to
scroll back in the session log to bring expressions and function definitions forward for editing and

reeval uation.

Applications

Programmers are concerned with three things when writing A+ applications. data, analytics (i.e., computa-
tions), and the user interface. The data of interest either reside in files accessible to the application or are
maintained by another process. The analytics are the computations run on the data, and the user interfaceis
the means for presenting the data or various aspects of the analyticsto users. A+ has been designed for effi-
cient programming of all three aspects of application production, and for efficient execution as well.

Datain filesare usually maintained in A+ as so-called mapped files (see“Filesin A+”, page 202), which are
simple (i.e., not enclosed, or nested) arrays. Once an A+ application has opened a mapped file, it deals with
it much asit would an ordinary array of itsown creation. Mapped files can be shared, although shared updates
across the network are problematical, unless mediated by a single process. Unix text files can also be copied
into and written out of A+ processes.

Real-time data, which is of the utmost importance to many A+ applications, is accessed through an interpro-
cess communication toolkit called adap. Thistoolkit provides a small number of functions for establishing
and maintaining communication between an A+ process and other processes, such as a set of real-time data
managers that read and write A+ arrays.

As an array-oriented language with a set of primitive functions that apply directly to entire arrays, A+ pro-
vides very efficient processing of functions that apply to large collections of data, often with less code than
more conventional programming languages. Less code generally meansfewer chancesfor failure; moreover,
the A+ language processor isinterpretive, which makes debugging relatively easy. Unless you take advan-
tage of array calculations, however, being in aninterpretive environment islikely to hurt you in performance.
Thinking interms of array algorithmsis both arequirement and an opportunity, and it differentiates devel op-
ment in environments derived from APL from development in most other environments.

Application user interfaces are built with the A+ screen management system, atoolkit that relies on a small
number of functionsto create and interact with avariety of screen objects, such asbuttons, tables, and layouts.
See the chapters on screen management, display classes, and display attributes.

Script Files

Applications are maintained in text files called scripts. Scripts contain function and data definitions and exe-
cutable expressions. A+ has specific facilitiesfor loading scripts. Loading a script has much the same effect
asentering thelines of the script one at atimein desk calculator mode, starting at thetop. Scripts can contain

A+ Language Reference November 2000 13

2. Overview of A+

14

the A+ expressions for loading other scripts. Consequently application scripts do not have to contain copies
of utilities and toolkits, and A+ applications tend to be very modular.

The A+ Keyboard

A+ usesthe APL “union keyboard,” which means that characters which are present on a standard key-
board retain their same positions for APL (A+) usage.

The special APL characters are entered by pressing a key while pressing either the M eta key, or both
the M eta and Shift keys. The figures show the keyboard in two ways. The M eta keys (on Sun key-
boards) are on either side of the space bar and are marked with diamonds. IBM PC keyboards have no
Meta keys; use the Alt key, similarly situated, instead of M eta.

Note that the M eta-Shift-m (") looks like Meta-m (”) and Shift-\ (]) but does not represent an A+
function.

Some APL symbols on the A+ keyboard are not used by A+. Following are two diagrams, one showing all
of the symbols on the keyboard, and one showing only those symbols which have assigned meaningsin A+.

On thse diagrams, each symbol is placed in one of four positions on each keycap, which are entered in the
following manner:

Norra! fext A+ sinfaly

Shiﬂ—lTrE_t]I-l-—MelMShEﬂ

Unshifted—»=b 1-=—Ncta

{lowercase) u A an Y

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

2: Overview of A+

““'I@F BY|sA|Bdjrb|&o|~of (»]) ~|_ '+E
“ofll” 3<|ds|iS5=l6z||7T>|B=|9v|0a]-X|= !p&l:!

| /7
oo |

Layout of the A+ Keyboard, showing the locations of al of the charactersin the A+ font

~~[1zle |#vlsalselanls [<e|¢) |_:|+e| Back|
12713 <4 s[5=6=2||7>|8=[9 v]|0A|-x|==+|5pace
Tah T |y U
rplt~(yt u ‘
F_
f_g k' 1 : |
-: Ehlft
| | oLinTim ||, |. ‘
D .)

Layout of the A+ Keyboar d, showing only those characters which have defined meaningsin A+

A+ Language Reference November 2000 15

3: The Structure of Data

Chapter 3. The Structure of Data

16

In this chapter, the concepts of A+ dataand the vocabulary used in describing them are discussed first. Then
some A+ primitive functions for creating and indexing arrays and for inquiring into their characteristics are
introduced. |n these sections a number of examples of arrays are given. Finaly, certain classes of arrays
which are useful in the description of A+ functions are treated.

Concepts and Terminology

The data objectsin A+ are arrays, which can be visualized as rectilinear arrangements of individual values.
Anindividual valueinanarray iscalled an element. Inthesimplest arrays, the elementsareeither all numbers
or all characters. A number or a character isitself an array, of the most elementary kind.

In the rectangular visualization of an array, each set of parallel edges defines adirection. Corresponding to
each of these directionsisan axis. The axes of an array are ordered. In the visualization of an array with
three axes, the first axisis directed away from the viewer, the second is directed downward, and the third is
directed to theright. A two dimensional display of an array with three axes shows it as a series of planes
arranged vertically, representing cross sections perpendicular to the first axis. Theterm leading axesis used
for any set composed of all the axes from the first up to some particular axis, inclusive, and trailing axes for
any set composed of all the axes from some particular axis through the last one.

An array with no axes, necessarily consisting of asingle element, iscalled ascalar. All elements of arrays
arescalars. Arrayswith oneaxisare called vectorsor lists, or, if character, strings. Arrayswith two axesare
called matrices, and sometimestables. A set of elementslyingalong, i.e., paralel to, thefirst axisof amatrix
iscalled acolumn, and a set along the second axisarow, just the same asin ordinary usage for tables. These
terms are al so used for elements along the two trailing axes of arrays with more than two axes.

Dimension, Shape, and Rank

The length of an axisisthe number of elements lying along any one of the edges defining that axis. This
length isalso called adimension, so an array has as many dimensions as axes. (Theword dimension issome-
times used as a synonym for the word axis, but not in this manual.) The vector composed of the lengths of
all axesof an array, i.e., the vector of dimensions, is called the shape of the array. The ordering of the dimen-
sionsin the shape is the same as the ordering of the axesto which they correspond. The total number of
elementsin an array can be found by multiplying together all the elements of its shape.

An array can be empty, that is, it can have no elements at all. An empty array can have any humber of axes
except zero, which is disallowed, essentially because you can’t have an empty container without a container.
At least one of the dimensions of an empty array is equal to zero.

Therank of an array isthe number of itsaxes, and thereforeit isalso the number of elementsinitsshape, i.e.,
thelength of itsshape. A scalar has an empty shape—its shapeisavector that has no elements—and itsrank
is0. (Incidentally, when all the elements of an empty vector are multiplied together the result is 1, by con-
vention, so that the usual formulation for the number of elementsin an array a—namely, «/ a —worksfor
scalars also.)

Every element of an array can be referenced by a set of coordinates called indices, to retrieve the value of the
element or to giveit anew value. Thereisoneindex, or coordinate, for each axis, and A+ definesits value
to be an integer between zero and one less than the length of that axis, inclusive. The number of indices of
an element in an array, then, equals the rank of the array.

Some computational languages use the word cell as a synonym for element, but A+ does not (except in con-
nection with the displays created by s, the screen management system): cell is used in connection with the
partitioning of an array, as defined by a set of leading axes. In practice, multidimensiona arrays are com-
monly viewed as partitioned into collections of lower dimensional arrays. For example, a numeric matrix

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

3. The Structure of Data

containing bond prices may be organized so that the rows are time series of prices for bonds, with one row
for each bond of interest, while the columns are collections of prices at particular times. For some calcula-
tions the rows would be emphasized, while for others, emphasis would be on the columns. One view
represents a partition of the matrix into a collection of row vectors, and the other into column vectors.

A+ emphasizes partitions where the lower dimensional arrays lie along a set of trailing axes. The lower
dimensional arrays that comprise such a partition are called cells. The complementary set of leading axesis
called the frame of the partition that holds the cells; the cells are said to be in their frame. In the case of the
numeric matrix of bond prices, the row vectors are the cells of rank 1, and the first axisis their frame.

Every set of leading axes defines a partition into cells for which it isthe frame. The set of all axesisapar-

ticular set of leading axes, and therefore defines apartition. Sincethere are no axesleft for the cells, the cells
must be the elements of the array; the A+ notion of cell, then, includes the more common one. At the other
extreme, the array itself isacdll, i.e., apartition of itself into one subarray. In this casethe cell takesall the
axes and therefore the frame has no axes.

A cell consists of all those elementsthat have one particular set of indicesfor the leading axes that define the
partition, and all possible indicesfor thetrailing axes. The entire cell can be selected by specifying only the
particular indices for the leading axes. Those leading axes are the frame of the partition, and therefore the
frameis, loosely speaking, an array of cellsthat can beindexed by valid indices of them. A partition creates,
then, aview of an array asaframe of cells. Thereismore about framesand cells, including several examples,
later in this chapter. The“Dyadic Operators’ chapter, and especially its“Rank Deriving Dyadic” section
(page 116), has afurther discussion of this subject, with examples.

One partition plays a special rolein A+, the one defined by thefirst axis alone; the cellsfor this partition are
called theitems of an array. Every array can be regarded as a vector of items, and many A+ functions look
at themin just that way. In such acontext, ascalar isregarded as having a single item, namely itself.

Type and Nesting

Another characteristic of arraysistype. Inasimplearray (definition later), al elements have the same type,
but a nonsimple array can contain elements of several different types.

The most common simple arrays are numeric and character. Every element of asimple numeric array isa
number, and every element of asimple character array isacharacter. Numeric arrays can be of either integer
or floating point type. These two types correspond to whole numbers and fractional (sometimes called dec-
imal) numbers. A+ numeric primitive functions applied to integer arrays may automatically convert their
argumentsto floating point, like the Matrix Inverse function, or may attempt to produce an integer result, like
Add and Subtract. If an overflow occursduring thisattempt, thetype of theresult is changed to floating point.

The type of asimple array may also be symbol or function if it is nonempty, or null if it isempty. A symbol
is acharacter string represented as asingle scalar; it is denoted by a backquote followed by the string, asin
‘sym . A function expression, e.g., or +.« , and afunction scalar, e.g., <{-} , both have type function.

While the elements of arrays are often just individual numbers and characters, an element of an array can be
an encapsulated multi-element array. That is, any array can be enclosed to become a scalar, and this scalar

can be an element of another array. Also, any enclosed array, except afunction scalar, can be disclosed, in

order to work with its contents. (A function scalar isan enclosed function expression. The operator Apply,

given afunction scalar, produces the underlying function expression.) Anarray that has an enclosed element
other than afunction scalar is called nested, and one that has no enclosed elements except function scalarsis
called smple. A function scalar issimple, but an enclosed function scalar isnested. Any nested array is nec-
essarily nonempty, being or containing ascalar.

A simple scalar symbol or function scalar can be an element of anested array. In order for data whose type
is character, integer, floating point, function, or null to appear in a nested array, however, it must first be
enclosed. Clearly, any nonscalar array must be enclosed before being inserted as an element in another array,
since the elements of all arrays must be scalars.

A+ Language Reference November 2000 17

3: The Structure of Data

18

When an array other than a function expression is enclosed, the resulting array is a scalar of type box. The

type of anonscalar nested array isthetype of itsfirstitem. Since anested array can contain elements whose
types are box, symbol, and function, itstype can be any one of these three. The disclosure of abox scalar, of
course, can yield an array of any type.

Any empty array issimple, becauseif it were nested, it would contain an enclosed array. An empty array that
isreshaped or selected from a character, integer, or floating point array is of the sametype. Empty arrays of
these three types can a so be produced by explicit type transformations from empty arrays of thesetypes. The
type of an empty array of symbols, functions, nulls, or boxesisnull. The empty vector whose typeisnull is
called Null or the Null; it can be represented as () .

Thereisalso atype called unknown, to guard against weird cases that might arise. It will not be mentioned
further, except in the description of the Type function.

Creating Arrays

A+ provides direct ways to specify constant arrays. A list of numbers separated by blank spacesis one
description of asimple constant numeric array. For example, the constant

10 2.3e-2 34.156

isafloating point array with one axis, of length three. The element atindex 0is 10, atindex 1is.023, and at
2is34.156. The expression with e means the number on the left times ten to the power shown on theright.
If you omit the blanks between numbers—a poor idea indeed, since it would make your code very difficult
to read—, A+ will give you a numeric vector, but probably not the one you intended. If anumber is being
parsed and a character is examined that can’t be part of the number, then anew number is started if the char-
acter could begin anumber. For instance,

1le-3.5 40.358.62.7 isread by A+ as0.001 0.5 40.358 0.62 0.7

Simple symbol vectors can be written similarly, and blanks are not needed. One of length fiveis
‘syml ‘sym2 ‘sym3‘sym4‘sym5

It is also easy to describe simple constant character vectors. For example,
axrTvw’

isacharacter array with one axis, of length six. Theelementsat indicesO, 1, 2, 3, 4, and 5 are, respectively,
a’ X T 'V Jand’'w . Theempty character vector can bewritten most easily as” —just two
guotation marks, with nothing between them.

A nested vector can be described conveniently by a strand, a parenthesized expression in which the vector’s
elements are separated by semicolons. Enclosure of each element isimplied by strand notation. For example,

(‘sym; +;1 2 3 4; 1.7 3.14; 'example’;)

isanested vector of length six. The blanks after the semicolons are not required, but usually promote read-
ability. All of its elements except the second are of type box; the second isasimple function scalar. The
types (lengths) of its elements when each is disclosed are: symbol (a scalar), function (ascalar), integer (4),
floating point (2), character (7), and null (0). The absence of an expression in any position of the strand
impliesa Null.

Arrayswith morethan one axis can be formed using the dyadic primitive function called Reshape and denoted
by (rho). For example, the result of the expression

23 'axrTvw' @ Enter thisin an A+ session, and press Enter.
axr a Thisrow and the next display the result.
TVw a8 Text following “2” isacomment.

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

3. The Structure of Data

isan array with two axes—amatrix. Theleft argument of Reshapein thisexampleisavector, specifying the
shape of theresult. Theindex of an element in the matrix isapair consisting of oneindex for axis 0, and one
for axis 1. For instance, the element 'r' isindexed by the pair O, 2.

The monadic primitive function called Interval and denoted by (iota) is somewhat like Reshape. It creates
arrays of any specified shape whose elements are the integers 0, 1, For example,

17 a Simple vectors are always displayed horizontally.
012345678910111213141516

isan array with one axis. Notethat thisarray has 17 elements, and the index of thei-th element isi for every
i from O to 16.

The Interval primitive can also create arrays with more than one axis. For example:

235 a Enter thisin an A+ session, and press Enter.
0 1 2 3 4 & Thesesevenrows (oneblank) show the result,
5 6 7 8 9 2 whichisequato235 2«3«5
1011121314 2 (which could bewritten2 35 2«3«5).
a A blank line separates planes. If there were afourth axis,
1516171819 2 two blank lines would separate subarrays corresponding to
2021222324 @ indices along the first axis, and single blank lines between
2526272829 @ subarrays corresponding to indices along the second axis.

The empty integer vector ismost easily written 0 and the empty floating point vector 0 0. (decimal point).
Indisplays, al empty arrays occupy one (blank) line, except the Null, which occupies no display spaceat all.

The function Enclose, denoted by <, isused to enclose arrays; < isused also to indicate enclosure in displays:

<25 a8 Much like the previous example, but an enclosed scalar.
< 01234 =@ The < is used to indicate enclosure.
56789 a< isdisplayed only at the start of each enclosed array.

Strand notation can be combined with Enclose:

(123;<123;abc’;+;'smbl;) 2 The last element is Null.
< 123 a Strand encloses the simple vector.
<< 123 a Strand encloses the enclosed vector.
< abc a Enclosed character vector.
< + a Enclosed function expression.
< ‘smbl a Enclosed symbol.
< 2 Enclosed Null.

Warning! InVersion 2, sometimes < is displayed to indicate that what follows is a symbol; then no back-
quote (*) is shown for the symbol.

Indexing Arrays

A+ provides primitive functions to access the elements of an array. One such function is denoted by the
bracket pair [| andis called Bracket Indexing. For example, using arrays displayed in the previous section:

‘axrTvw'[4]
v

‘axrTVvw'[5 0 1]
wax

(‘sym;+;1 2 3 4;1.7 3.14;example’;)[2]
< 1234

A+ Language Reference November 2000 19

3: The Structure of Data

20

(239)[0:1;3]
8

An omitted index implies al permitted indices for that axis, so one can easily obtain arow and a column:

(235)[00;] * Thefirst row.
01234

(235)[0;;4] @ The fifth column of the first plane of the array;
4914 a vector result.

For a3-dimensional array, an item isamatrix. In Bracket Indexing, a semicolon may be omitted when al
theindices following it are omitted, so one can index an array asif it were avector containing the array’s
items:

(2351 =@ The second item: any element of itis
15161718 19 a(235)[1:j:K] for somej andk.
2021222324
2526 27 28 29

More generally, one can index an array of rank r asif it were an (r-n)-rank array (frame) of rank-n cells. Say
one has afive dimensional array; one can view it as athree dimensional array of two dimensional cells:

(45623)[0;0,0] 2 Any element of the first cell is
012 a(456 2 3)[0;0;0;j:K] for somej , k.
345 a8 Thefirst three indicesindex the frame.

One more example demonstrates the power of working with items, frames, and cells. For thisexample, a
small part of the capability of the primitive function Take () and the primitive operator Rank (@ must be
explained. For positive n, the expression n a producesthefirst n itemsof a. The derived function @1
applies Taketo all cellsof rank 1initsright argument, i.e., to al rows, whose items are elements. Taking a
certain number of elementsin each row is equivalent to taking a certain number of columns. Thusthe fol-
lowing expression takes three rows (items of amatrix) after taking five columns of afive by ten matrix:

35@1 510 2 3 (5(@1) 510) isequivaent.
0 1 2 3 4 a
1011121314 a Take 5 columns.

2021222324 a Take 3 rows.

Inquiring about Arrays

Shape and Rank

The primitive function denoted by the monadic (i.e., one argument) form of the symbol (rho) is called
Shape. It produces the shape vector of its array argument. For example, 23 isthevector 2 3, and
‘axrTVw' isthe one-element vector whose only element is 6.

Theresult of a, adouble application of Shape, is aone-element vector whose value istherank of a. In
particular, the element of the one-element vector 36 or 'X’ isO; separately entered numbers and char-
acters have no axes, and their rank is therefore O; they are scalars.

Type and Depth

The Type monadic primitive function (') produces the type of its argument, asascalar symbol. First, the six
types of simple arrays.

'25
int

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

3. The Structure of Data

'2.71828 3.14159

‘float
"axrTVw’
‘char
“pp ‘1l
‘sym
{+} @ Parser needsbraces as hint that + isan arg.
‘func
'<{+} & A function scalar is also of type ‘func
‘func
‘0
‘null
Next, the three types of nested arrays. The type of a nested array is the type of thefirst item.
'<234
‘box
“rl,(;2.7 3.1) 2 Comma concatenates two args.
‘sym
'(+) a A function scalar.
‘func

Last, the four types of empty arrays.

‘char

"0
‘int

'012 10.1
‘float

04 (+;-«;)
‘null

The Depth monadic primitive function (%p produces the depth of nesting of its argument, as a scalar integer.
The depth of amulti-item array is the greatest of the depths of itsitems. The depth of afunction expression
is-1, by convention, and the depth of afunction scalar, which is an enclosed function expression, is 0.

% 234 a Simple
° %o<’abc def’ a Result of Enclose
' %0(2 3;+;'a’'b'c) 2 Enclosure implied by strand
' %o(<2 3;=;'a’b’c) 2 Strand with enclosed element
? %o(1 2;(3 4;(5 6;);7);8) 2 Strand in strand in strand
3

A shorter definition of asimple array is any array whose depth does not exceed 0. A nested array, which is
any array that is not simple, can be defined similarly as one whose depth is at least 1.

Pictorial Representation

A file that shows two dimensional representations of datais distributed with the Version 2 A+ system and
resides (after loading) inthe disp context. Hereisasample of its use:

$load disp
disp.disp 2 3 (‘ab’;'abc'def; 2 4; 1.1 2.2;;«)

A+ Language Reference November 2000 21

3: The Structure of Data

22

<
ab “abc ‘def " "0123”
- e . 74567
1122777 "«

Thisfileisnot distributed with Version 4. A more up-to-date versionisavailablein/common/a/disp.+
Itisused asfollows:

$load /common/a/disp
disp.disp 2 3 (‘ab’;'abc'def; 2 4; 1.1 2.2;;«)

+3 +
2+2-+ +2------- + 4 +”
“ab” “abc'def"2012 3™
T+ +omme +45677
” S [— +
+2--mmmm- + 40 +0+

11227 +° «

+femmmee- + ++
+ +
Consult the ASCI|I text file /common/a/disp.doc for further information.

Subtypes and Supertypes

Slotfillers

A special form of nested array called a slotfiller isrecognized by certain primitive functions and toolkits. A
slotfiller isatwo-element vector (sym;val) . symisasimplevector or scalar of distinct symbols. val has
the same number of items as sym (recall that a scalar has one item). It can be either any nested scalar or any
vector each of whose items either has a depth of at least 1 or is afunction scalar that is the enclosure of a
defined function. Thus primitive functions can appear inval only when they are enclosed at least twice, i.e.,
as enclosed function scalars. A dotfiller can be thought of asadictionary of keys (with no repetitions) and
values.

Thereisaway to test whether avariable or an expressionisadlotfiller or not: _issfx islif x isadotfiller
and Oif itisnot. Cf.the“lIsaSlotfiller” section, page 148, in the “ System Functions’ chapter.

Examples of dotfillersare:
(‘small ‘medium ‘large ‘super;(16;32;64;72))
(‘a;<97)
and
(g T'w;(f;g:<{+})
wheref and g are user-defined functions, and + is enclosed by < and the strand; but not
(‘9 T'w;(+;-1«)
since nonnested primitive functions are prohibited in dlotfillers.

Recall that when A+ displays a nested array, it uses an Enclose symbol (<) to indicate the beginning of the
display of each nested array. It indents subarrays appropriately to show their total depth of nesting. Thefirst
sample dlotfiller is displayed as:

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

3. The Structure of Data

< ‘small ‘medium ‘large ‘super

<< 16
< 32
< 64
< 72

The Pick function (page 82) can extract values from dotfillers:

‘medium (‘small ‘medium ‘large ‘super;(16;32;64;72))
32

Restricted Whole Numbers

Many functions require as arguments whole numbers that are within the range of integer representation but
do not insist that the type of these arguments be integer. They also accept floating point numbers that are
tolerably equal to integers (see* Comparison Tolerance”, page 105) and numberswhose absolute valueisless
than 1e-13 . l.e, they regject floating point numbers that are significantly fractional or that are too large in
magnitude to be represented as integer type. Furthermore, they accept empty arrays regardless of type. For
convenience in this manual, the term restricted whole number is used for amember of the set consisting of
the integers, these floating point near-integers, and al empty arrays.

Since the functions that accept restricted whole number arguments use integersinternally, floating point val-
ues for these arguments involve a performance penalty, because of the implicit type conversion.

General Types

Many A+ functions and operators take arguments of several types, sometimes with some limitation, and itis
convenient to have aterminology dividing A+ data objectsinto three classes, asthey do. Inthismanual, these
classes are called general types. They are:
» character, consisting of ssimple arrays of characters
» numeric, consisting of simple arrays, unrestricted as to value, of
» floating point numbers
* integers
» mixed, containing all other data, namely
* simple arrays of
« functions
e symbols
« adl nested arrays
* box
« function
* symbol
Because general types are used mostly to indicate inclusion in the domains of functions and most functions
accept empty arrays of any type, all empty arraysareincluded in each general type. (Although acceptance of
empty arrays can cause anomalies like a character result for Add, such results are unlikely in fact to be cre-
ated; if they do arise, they will probably be accepted by any function to which they are presented. For

efficiency, the (empty) result of a mathematical function for a Null is whatever is most convenient for the
function: Null, integer, or floating point.)

A+ Language Reference November 2000 23

4. The Syntax and Semantics of A+

Chapter 4. The Syntax and Semanticsof A+

24

The main purpose of this chapter isto describe the syntax of A+, but through a series of examples, rather than
inaformal way. Consequently some commonly understood terms are used without being formally defined.
In particular, the phrase A+ expression, or simply expression, is taken to have the same general meaning it
does in mathematics, namely awell-formed sentence that produces avalue. In addition, some discussion of
semantics has been included, but only where it seemed reasonablein order to complete adescription. A brief
discussion of well-formed expressions is presented at the end of this section, after all the rules for the com-
ponents of expressions have been presented.

Names and Symbols

Primitive Function Symbols

A+ uses a mathematical symbol set to denote the functions that are native to the language, which are called
primitive functions. This symbol set, part of the APL character set, consists of common mathematical sym-
bolssuch as+ and «, commonly used punctuation symbols, and specialized symbolssuchas and . Insome
cases it takes more than one symbol to represent a primitive function, asin +/ , but the meaning can be
deduced from the individual symbols. The symbols are listed in Table B-1, page 225.

Two of the symbols can be used alone, viz., Band . If the execution of afunction or operator has been sus-
pended, they mean resume execution (with increased workspace size if necessary) and abandon execution,
respectively; in the absence of a suspension, they areignored. Instead of , adollar sign ($) can be used.
Inside a function definition, an expression can consist of the symbol 3 alone, but it will be ignored, and the
parser rejects alone as atoken error.

User Names

User namesfall into two categories, unqualified and qualified. An unqualified name is made up of alphanu-
meric (a phabetic and numeric) characters and underbars (_). Thefirst character must be alphabetic. For

example, a,alc,anda_lc areunqualified names, but 3xy and_xy arenot. (Although underbar iscurrently
permitted as the first character in user names, this manual has been written asif it were not, and you should
consider thisform reserved for system namesand avoidit.) Theidentifyingwordsin control statements (case,
do, elsg, if, while) arereserved by A+ for that use; they cannot appear as user names, even in qualified names.

A qualified nameiseither an unqualified user name preceded by adot (.), or apair of unqualified user names
separated by adot. In either case there are no intervening blanks. For example, . xwl andw_2.r2_a are

qualified user names. An unqualified name preceding the dot in aqualified name isthe name of a context. If
there isadot but no preceding name, the context is the root context.

System Names

System function names are unqualified names preceded by an underbar, with no intervening spaces, _argv
for instance. The use of system function namesis reserved by A+.

The name of an object traditionally (and thereforein A+) called asystem variableisan unqualified name pre-
ceded by abackquote, with nointervening spaces. For example, ‘rl isthename of the system variable called
Random Link. These objects cannot be dealt with directly in A+, but only through certain system and prim-
itive functions and system commands, to which they act as parameters. Asindicated in“Symbolsand Symbol
Constants”, page 27, they look just like symbols (and may be considered such). They are not, however, the
symbol forms of names: A+ will not recognizerl , for instance, as having anything to do with ‘rl ; the
quoted form'rl’ , however, isrecognized by system functionssuchas_gsv .

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

4. The Syntax and Semantics of A+

System Command Names

System command names begin with adollar sign, followed immediately by an unqualified name, whichis
the name of the command. The name is sometimes followed by a space and then by a sequence of characters
whose meaning is specific to the command, usually separated from the name by a space.

Comments

Comments can appear either alone on aline or to the right of an expression. A comment isindicated by the
a symbol (usually called “lamp,” sinceit lookslike abulb filament and since commentsilluminate code), and
it and everything to its right on the line constitute the comment. For example:

a+b a8 Thisisthe A+ notation for addition.

I nfix Notation and Ambi-valence

A+ isamathematical notation, and as such usesinfix notation for primitive functions with two arguments.
In infix notation, the symbol or user name for a function with two arguments appears between them. For
example, a+b denotes addition, a-b subtraction, a«<b multiplication, and a b division.

In mathematics, the symbol - can also be used with one argument, asin -b, in which caseit denotes negation.

Thisistruein A+ aswell. Because the symbol denotes two functions, one with one argument and the other
with two, it iscalled ambi-valent (i.e., it uses “both valences’). A+ has extended the idea of ambi-valenceto
most of its primitive functions. For example, just as-b denotes the negative of b, so b denotes the recip-
rocal of b.

Defined functions cannot be ambi-valent.

Functions with one argument are called monadic, and functions with two arguments are called dyadic. One
often speaks of the monadic use or dyadic use of an ambi-valent primitive function symbol.

Syntactic Classes

Numeric Constants

Individual numbers can be expressed in the usual integer, decimal, and exponential formats, with one excep-
tion: negative number constants begin with a“high minus’ sign (¢)—including ¢Inf , which we will come
to later—instead of the more conventional minus sign (-), although negative exponents in the exponential
format are denoted by the conventional minus sign.

Exponential format is of theform 1.23e5 , meaning 1.23 times 10 to the power 5, ¢5e2, meaning -500, and
le-2 , meaning .01. Only numbers can appear around the e. The one following it must be an integer—no
decimal point—and have aregular minus sign if negative: a high minus there elicits a parse error report. A
negative number before the e must have ahigh minus: aregular minusis considered to lie outside the format.

Itisalso possible to expressalist of numbers as a constant, simply by separating the individual numbers by
one or more blank spaces. For example:
1.23 ¢7 45 3e-5

isanumeric constant with four numbers: 1.23, negative 7, 45, and .00003. Inf can appear insuch alist. If
you omit the blanks, A+ will give you anumeric vector, but probably not the one you intended. |f anumber
isbeing parsed and a character is encountered that can’t be part of the number, then anew number is started
if the character could begin anumber. For instance,

le-3.5 40.358.62.7 isread by A+ as0.001 0.5 40.358 0.62 0.7 .

A+ Language Reference November 2000 25

4. The Syntax and Semantics of A+

26

Character Constants

A character constant is expressed as alist of characters surrounded by apair of single quote marks or a pair
of double quote marks. For a quote mark of the same kind as the surrounding quote marks to be included in
alist of characters, it must be doubled. For example, both 'abc”d’ and"abc'd" areconstant expressions
for thelist of charactersabc’d . Thereis, however, a distinction between the two kinds of quotation marks.

Within single quotes (’) the C escape sequences and indeed any \ ¢ are not treated in any way, but left asis.

In strings contained within double quotes (") these sequences and \c are treated as follows:
\n isreplaced by anewline character;
\ 0,\ 00, and \ 0oo (each o adigit) are replaced by a character (see below); and
the other sequences simply have the leading backslash removed.

These sequences and their trand ations are (where parenthesis indicates that A+ does not perform the substi-
tution that the parenthesized term implies):

Table 4-1: Double-Quote Trandlations

Name String Trangdlation Comment
newline \n newline character
(horizontal tab) | \t | for tab use "\11"
(vertical tab) \v %
(backspace) \b b for backspace use "\10"
(carriagereturn) | \r Ir for carriage return use "\15"
(formfeed) \f f for formfeed use "\14"
(audible alert) \a a
backslash \\
question mark \? ?
single quote \
double quote \" '
octal number \ooo acharacter see below
(hex number) \x hh xhh
(any other char) | \c c

Thus™\?2\\" isequal to’?\" and"\r\t" isequal to’rt’ ; \" preventsthe double quote from ending a
string within double quotes, and \\ allows literal inclusion of \ in atransated string in double quotes.

Thetrandation of an octal sequence— which is of variable length and could be shown as\ [[0]o]o—is best
understood as occurring in three steps. First, the digits to be trandated are found: thereis at least one (else
this would not be an octal sequence) and at most three, but the end of the string and any nondigit character
also act asterminators. Second, the string of digitsis taken as an octal number and istrandated to a decimal
number. Any 8 and 9 digits are accepted as 10 octal and 11 octal, and any overflow isignored, since only the
256 residueisused. Third, the ASCII character corresponding to that number isfound. If the string being
trandated isdigits , thetrandationis
‘char'8"10 10 10, digits where 1/(digitsy3 and 'digits is‘char .

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

4. The Syntax and Semantics of A+

The foregoing implies these equivalences:
"\99"R "\121" "\6a"3 "\006a"? "06"’a’ "\123456"3 "\123",'456’

Symbols and Symbol Constants

A symbol isabackquote (*) followed immediately by acharacter string made up of alphanumeric characters,
underscores(_), anddots(.). Symbol constants can bethought of as character-based counterpartsto numeric
constants, aggregating several charactersinto asinglesymbol. Justas1 2.34 12e3 3e5 isalist of four
numbers, so‘a.s ‘12 ‘b'w_3 isalist of four symbols. A backquote alone representsthe empty symbol.

A user name, like balance , can be put in symbol form by placing a backquote beforeit, asin ‘balance
A user namein symbolic form is always taken to refer to a global object (see“ Scope of Names’, page 177),
never alocal object. If it hasnodotinit, it refersto aglobal object in the current context.

System variable names, like ‘rl , arein the form of symbols. Unlike backquoted user names, they are not
decomposable. If var isauser name, then ‘var isrecognized by A+ in certain situations as referring to the
same object. A+ sees no relation, however, between rl - and the system variable ‘rl

TheNull

The Null isaspecial constant that can be formed asfollows: () . It isneither numeric nor character, but has
aspecid type, null. Itisan empty vector, i.e., itsrank is 1 and the length of itsonly axisisO.

Variables

Variables are data objects that are named. They receive their values through Assignment, or Specification,
which is denoted by the left-pointing arrow (). For example, the expression

abcR12 3
assigns the three-element list consisting of 1, 2, and 3 to the variable named abc. Any user name can serve
asavariable name. For more on assignment, see “ Assignment, or Specification”, page 31.

Functions and Function Call Expressions

Functions take zero or more arguments and return results. A sequence of characters that constitutes avalid
reference to afunction will be called a function call expression. That is, afunction call expression includes
afunction symbol or name together with all its arguments and all necessary punctuation. 1t may also include
unnecessary parentheses and blanks; if it does not, we will call it irredundant. In general, the arguments of
afunction are data objects, which may appear in function call expressions as variable names, constants, or
expressions that require evaluation. In addition, for the various forms of function call expressions using
braces, arguments can be function expressions (see “ Function Expressions’, page 29). For example,
f{9.98;.0775;«} and f{59;125;g} ,whereg isadefined function, arevalid function call expressions.

A function with no arguments, or parameters,—which must be adefined or system, not a primitive, function
—issaid to be niladic. The only valid irredundant function call expression for aniladic function f isf{} .

Functionswith one argument, monadic functions, can be primitive, defined, or system. Thevalid irredundant
function call expressionsfor afunctionf withoneargumenta aref a andf{a} . Intheformf a , the
blank isrequired only if f followed by someinitial part of a would form avalid name.

Dyadic functions can also be primitive, defined, or system. The valid irredundant function call expressions
for afunction f with two argumentsa andb area f b andf{a;b} , wherea iscalled the left argument
and b the right argument. In theinfix form, each blank isrequired only if its absence could cause anameto
be extended, and if the left argument isitself an infix expression it must be parenthesized.

Functions with more than two arguments must be defined or system, not primitive, functions. The only valid
irredundant function call expression for afunction of morethan two argumentsa, b, ..., c isf{a;b; ...;c} .

A+ Language Reference November 2000 27

4. The Syntax and Semantics of A+

Infunctional expressionsthat use braces, any position adjacent to asemicolon can beleft blank. For example,
each of thefollowing isavalid functional expression: f{a;} ,f{;b} ,f{;} ,f;a;b} ,f{;;b} . How-
ever, if f ismonadicthenf{} isnot valid becausef{} isreserved for niladic function call expressions.
When an argument position is legitimately left blank, A+ assumes that the argument is the Null.

The number of argumentsthat afunction takesiscalled itsvalence. Thevalence of adefined function isfixed
by the form of its definition.

Table 4-4, page 34, summarizes the function call expressions discussed here.

Operatorsand Derived Functions

There are three primitive formal operatorsin A+, known as Apply, Each, and Rank. By aformal operator
we mean an operator in the mathematical sense, i.e., afunction that takes a function as an operand, or pro-
duces afunction as aresult, or both. The resulting function is called a derived function.

The Apply and Each operators are both denoted by thedieresis, j . For afunctionf , the function derived from
the Each operator is denoted by f; . Thefunction f can be either monadic or dyadic, and fi has the same
valenceasf . For agiven function scalar g, whereg isequal to <{f} , the function derived from the Apply
operator isdenoted by gj . Thefunctionf canbeeither monadic or dyadic, andgj hasthesamevaenceasf .

The Rank operator is denoted by the at symbol, @ Unlike Each, the Rank operator has both a function argu-
ment and a dataargument. For afunctionf and datavalue a, the function derived from the Rank operator is
denoted by f@a. Thisderived function has the same valence asf , which can be either monadic or dyadic.

A+ permits defined operators. Aswith primitive operators, only infix notation is alowed for operator and
operands. Like Each, the operand of amonadic defined operator isto theleft of the operator name. For exam-
ple, if the operator isopmthen +opmisthe derived function for +. For adyadic defined operator, one operand
ison the left of the operator name and the other is on the right, like the Rank operator. For example, if the
operator isdyop then +dyop« denotesthe derived functionfor + and «. A dyadic defined operator can have
adataright operand: see the note following Table 4-5, page 35. See also “Operator Syntax”, page 178.

Unlike a primitive operator, the valence of afunction derived from a defined operator is not determined by
the valence of the function operands, but, like a defined function, by the form of the operator definition.

There arefive other symbols (°/fi) that can appear with certain primitive function symbols, the resulting
sequences representing functions. Their syntax might suggest that these symbols represent operators; how-
ever, not all primitive function symbols can be used in these sequences, and neither can defined function
names. Conseguently it would be misleading to think of them asformal operators, so we have simply listed
all the sequencesthat are allowed. It is often convenient, however, to speak loosely of these sequences as
representing derived functions, and of the five symbolsin question as representing operators, namely, Inner
Product, Outer Product (°.), Reduce, Scan, and Bitwise.

From now on, the general terms operator and derived function will include Apply, Each, Rank, defined oper-
ators, their derived functions, and the “operators’ and “derived functions’ in Table 4-2.

28 Adobe Acrobat Test of the A+ Language Reference Manual November 2000

4. The Syntax and Semantics of A+

Table 4-2: Special Character Sequences (Quasi-Operators)

“Operator’ Name “Derived” Functions
Bitwise 'fi (Cast and Or) i ~fi <fiAfi =fi ffi >fi ofi
[nner Product t«w T4+

Outer Product +< (>(/f*; D

Reduction +H o« N

Scan Ho AN

Operator call expressions should be understood in terms of derived functions and function call expressions.
Namely, an operator symbol and its function operands, or in the case of the Rank operator, its function oper-
andtoitsleft and its data object operand immediately toitsright, form aderived function. A derived function
issyntactically like any other function, and so can be used in the function position of any function call expres-
sion,asinf@a{c;d} andb f@a c . SeeTable4-3forasummary; it shows both irredundant expressions
and expressionsin which the derived functions are parenthesized. Asin function call expressions, the blanks
are not required in some instances and the left argument may need to be in parenthesis, moreover, aconstant
data operand and a constant right argument may require punctuation to separate them.

Table 4-3: Operator Call Expressions

Operator | Formsfor Derived Function Formsfor Derived Function
Valence | Having Monadic Vaence Having Dyadic Valence

(f op)a flop a a(f op)b aflopb
monadic

(f op){a} f pp{a} (f op){a;b} f op{a;b}

(f op g)a flop g a a(f op g)b afppghb
dyadic

(fop g)fa} fppogfa} (fopglab} fop g{ghb}

Function Expressions

The function arguments of operators are function expressions. The simplest function expressions are the
names of defined functions and the symbolsfor primitive functions other than Assignment and Bracket | ndex-
ing. Any formulation of aderived function is also a function expression (see “ Operators and Derived
Functions’, page 28).

Function expressions are limited to infix notation, since operators are limited to it.

A function expression can be enclosed in parentheses. For example, a(f@1)b isequivaenttoa f@1b
Moreover, afunction expression is avalid function argument to aformal operator, and therefore quite com-
plicated function expressions can be built. For example, +/ isafunction expression, and therefore so are
thefollowing: +/j , +/jj ,and +/j@a. See"Scope Rulesfor Function Expressions’, page 32.

A+ Language Reference November 2000 29

4. The Syntax and Semantics of A+

30

Bracket Indexing

A+ dataobjects are arrays, and Bracket Indexing isaway to select subarrays. Bracket Indexing uses special
syntax, whose formis

X[a;b; ...;c]

where x represents a variable name or an expression in parenthesis, a, b, ...,c denote expressions, and the
number of semicolonsisat most one less than the rank of the array being indexed. (Theform x[] is, how-
ever, alowed for scalars.) The space between the left bracket and the first semicolon, between successive
semicolons, and between the last semicolon and the right bracket, can be empty. If there are no semicolons,
the space between the |l eft and right brackets can be empty. Inserting semicolonsimmediately to the left of
the right bracket does not change the meaning of the entire expression, as long as the maximum allowable
number of semicolonsisnot exceeded. Theform[a;b; ...;c] isanindexgroup. See“ Sequencesof Expres-
sions’, page 32, and “Bracket Indexing”, page 57.

Expression Group

An expression group is a sequence of expressions contained in a pair of bracesin which the expressions are
separated by semicolons, where there is not a function expression immediately preceding it (except perhaps
for spaces), so it is not aset of arguments for afunction. Any of the expressions can be null, consisting of
zero or more blanks. For example:

{a;b;...;c:}
and

{a;b;...;c}
are expression groups, where a, b, ... ,c denote expressions. See.

Expression Result and Expression Group Result

The result of an expression is the result of the last function executed in the expression, whether primitive,
defined, or derived. See“Well-Formed Expressions’, page 35.

Theresult of an expression group is the result of the last expression executed. It is possible that the last
expression in the group may not be the last one executed—indeed, may not be executed at all; seethe
“Result” section, page 89.

Strands

Aggregate data objects (nested arrays) can be formed by separating theindividual data objects by semicolons
and surrounding the result with apair of parentheses. For example:

(a;b; ...;0)
wherea, b, ..., ¢ denote expressions. Any of these expressions can be function expressions. There must be
at least one semicolon. See* Sequences of Expressions’, page 32.

Function Scalars

The above strand notation produces objects with at least two elements. One-element aggregates of data can
be formed with the primitive function Enclose (page 66), denoted by <. A one-element object such as

<{a}

where a isafunction expression, is called a function scalar.

Thesymboal i , used also for the Each operator, serves asthe Apply operator when the operand (argument) of
the operator isafunction scalar. For example, a(<{ })ib isa b.

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

4. The Syntax and Semantics of A+

Assignment, or Specification

The Assignment primitive, denoted by [3, is used to associate a name with avalue. For example:

ail

f3+
assignsthe value 1 to the name a and the function Add to the namef . The nameto theleft of the assignment
arrow isassigned the value of the expression to theright. If that expressionisafunction expression, the name
to which it is assigned represents a function—not the name of afunction, but afunction itself. Otherwiseit
represents avariable.

A series of names can be associated with a series of values, using strand notation; for example,
(a;b;c)B(1 2 3;34 7;'txt)

Ordinary Assignment can also be expressed as (a)l3b . Any appearance of al3b inside afunction or operator
definition meansthat a will bealocal variable, if a isan unqualified name. Theform (a)Bb can beusedto
assign avalueto theglobal variable a, provided that ai3... doesn’t appear elsewherein the definition. If
both al3... and (a)R3... appear, they are equivalent: the latter has no special significance.

Assignment behaves somewhat like adyadic function, in that it has aresult, namely, theright argument. The
left argument expression is syntactically limited to certain forms. See Table 7-2, page 92, for a summary of
Selective Assignment target expressions, which are additional to thosein ordinary assignment.

Assignment, in any form, cannot be the operand of an operator.

Precedence Rules

Precedence rules describe a hierarchy in the syntactic elements of alanguage that determines how these ele-
ments are grouped for execution in an expression. For example, in mathematics « hashigher precedence than
+, which means that « is evaluated before +. For example, in the mathematical expression a«b+c, the sub-
expression a«b is grouped for execution, and the result is added to c.

The precedencerulesin A+ aresimple:

« al functions have equal precedence, whether primitive, defined, or derived
« all operators have equal precedence

* operators have higher precedence than functions

« the formation of numeric constants has higher precedence than operators.

Right-to-L eft Order of Execution

Theway to read A+ expressionsis from left to right, like English. For the most part we al so read mathemat-
ical notation from left to right, although not strictly, because the notation is two dimensional. To illustrate
reading A+ expressions from left to right, consider the following examples.

b+c+d a8 Read as: “b plustheresult of ¢ plusd.”
X-y a8 Read as: “x minus the reciprocal of y.”

Asyou can see, reading from | eft to right in the suggested styleimpliesthat execution takes place right to | ft.
Inthefirst example, to say “b plustheresult of ¢ plusd” meansthat c+d must be formed first, and then added
tob. Andinthe second example, to say “x minusthe reciprocal of y” meansthat y must be formed before
it is subtracted from x.

To besure, reading from left to right is not necessarily associated with execution fromright to left. For exam-
ple, the expression b c+d isread left to right in conventional mathematical notation as well as A+, but the
order of evaluation is different in the two; in mathematics b divided by ¢ isformed and added to d, and con-

A+ Language Reference November 2000 31

4. The Syntax and Semantics of A+

32

sequently the expressionisread as “b divided by c, [pause] plusd,” whilein A+, bisdivided by c+d. The
order of execution is controlled by the relative precedence of the functions, or operations. 1n mathematics,
division has higher precedence than addition, so that inb c+d, division is performed before addition.

Another way to say that A+ expressions are executed from right to left isthat functions have long right scope
and short left scope. For example, consider:

atb-c e«f

Thearguments of the subtraction function areb on theleft (short scope) andc e«f ontheright (long scope).

Theleft argument isfound by starting at the subtraction symbol and moving to the left until the smallest pos-
sible complete subexpressionisfound. Inthisexampleitissimply thenameb. If thefirst nonblank character
to the left of the symbol had been aright parenthesis, then the left argument would have included everything
to the left up to the matching left parenthesis. For example, the left argument of subtraction in a+(x b)-

c e«f isx b.

The right argument isfound by starting at the function symbol and moving to theright, all the way to theend
of the expression; or until a semicolon is encountered at the same level of parenthesization, bracketing, or
braces; or until aright parenthesis, brace, or bracket is encountered whose matching left partner isto the left
of the symbol. In the above example, the right argument of subtraction is everything to itsright. If the case
of atb-(c e)«f ,therightargumentisalsoeverythingtoitsright. However, for a+(b-c e)«f ,theright
argumentisc e.

Scope Rulesfor Function Expressions

Interestingly enough, the scope rules for function expressions are the mirror image of those for ordinary
expressions. Namely, operators have long scope to theleft and short scopeto theright. For example, +/i@a
isequivalent to ((+/)j)@a , andif dyop isadyadic defined operator, +dyop | isequivalent to

(+dyop)i , not+dyop(i)

Sequences of Expressions

Index groups, expression groups, and strandsareformsfor sequences of expressions separated by semicolons.

The expressionsin an expression group are executed in the order suggested for reading, from left toright, like
successive statementsin afunction. Index groups and strands, however, fall within other expressionsand are
executed right to left. For example, if the variable a has the value 2 and the strand

bR3(al5;a«a)

is executed, the value in the second element of b will be 4, proving that the assignment a5 happened after
the multiplication a«a. (A Strand Assignment, however, like an expression group, is executed left to right,
after its righthand argument has been evaluated in the usual way.)

To improve readability in source files, sequences of expressions are often broken at the semicolons and con-
tinued on the next physical line. Notethat in such cases for expression groups the | eft to right order of
execution for the expressions within a sequence becomes a natural top to bottom order.

Execution Stack References

Execution stack references are &, &0, &1, etc. The symbol & can be used in afunction definition to refer to
that function. For example, afactorial function can be defined in either of the following ways:

fact{n}:if (n>0) n«fact{n-1} else 1
fact{n}:if (n>0) n«&{n-1} else 1

Adobe Acrobat Test of the A+ Language Reference Manual November 2000

4. The Syntax and Semantics of A+

When execution is suspended, the objects on the execution stack can be referred to by &0 (top of the stack),
&1, and so on. These objects can be examined and respecified, and execution resumed (3). The left to right
order of arguments generally corresponds to increasing stack humbers.

In the definition of a dependency a, the symbol & refersto that definition but a always denotes the (stored)
value of a, whereas in the definition of afunction f , both & and f denote the definition of f .

Control Statements

For the interpretation of these control statements, see “Control Statements’, page 120. The words case, do,
else, if, and while are reserved by A+; they cannot be employed as user names.

Case Statement

The form of a case statement is the word case, followed by an expression in parentheses, followed by an
expression group. When case followed by an expression in parenthesis is entered alone on aline (with no
pending unbalanced punctuation), the statement is taken to be complete, with Null for the expression group.

Do Statement

There are two do statements, which together have the same syntax as an ambi-valent primitive function (with
theword do in place of the function symbol). Both the monadic and dyadic forms have an expression or
expression group to the right of theword do. The dyadic form also has an expression to the left which would
serve astheleft argument if the word do were the name of adyadic function. In the absence of pending punc-
tuation, if do isentered alone on aline, it istaken to be complete, and echoed by A+, and if it is preceded by
an expression but followed by nothing, a parse error is reported.

If Statement

The form of an if statement isthe word if, followed by an expression in parentheses, followed by another
expression or an expression group. When if followed by an expression in parenthesisis entered alone on a
line (with no pending unbalanced punctuation), the statement is taken to be complete, with Null for the
expression group.

| f-Else Statement

The form of an if-else statement is the word if, followed by an expression in parenthesis, followed by an
expression or expression group, followed by the word else, followed by another expression or expression
group. When anif-elseisentered, if thereisnothing following the else, aparse error isreported in the absence
of pending punctuation.

While Statement

The form of awhile statement is the word while, followed by an expression in parentheses, followed by
another expression or an expression group. When while followed by an expression in parenthesisis entered
alone on aline (with no pending unbalanced punctuation), the statement is taken to be complete, with Null
for the expression group. If the expression in parenthesisis valid and nonzero, it is necessary to interrupt
execution (by Control-c Control-c) before anything else can be done.

Function Definitions

A function definition consists of afunction header, followed by acolon, followed by the function body, which
is either an A+ expression or an expression group.

Function headers take the same forms as functional expressions (see “ Functions and Function Call Expres-
sions’, page 27), except that only names can appear and none can be omitted. A function header has the

A+ Language Reference November 2000 33

4. The Syntax and Semantics of A+

monadic form, dyadic form, or general form. The monadic form is the function name followed by the argu-
ment name, with the two names separated by at least one space. For example, if the function name is
correlate then

correlate a:{...}
isafunction definition with the monadic form of the header.

The dyadic form of function header is the function name with one argument name on each side, with the
names separated by at least one blank. For example:

a correlate b:{...}
is afunction definition with the dyadic form of the header.

The third form of function header is the general form, which is the function name followed by a left brace,
followed by alist of from zero to nine argument names separated by semicolons, and terminated by aright
brace. For example:

correlate{a;b;c}:{...}
isafunction definition with the general form of the header. Inthisexamplethefunction hasthree arguments.
Names must appear in all positions of the argument list—no position can beleft empty. (Inaniladic function
definition no argument position is left empty; there just is no argument position.)

A function with one argument can be defined with either the monadic form of function header or the general
form and a function with two arguments can be defined with either the dyadic form or the general form. Ina
reference to the function, either form (of the correct valence) can be used, no matter how it was defined.

The number of arguments of a defined function is nine or fewer. See Table 4-4 for asummary of function
header formats.

Function Result

Theresult of adefined function is the result of the expression or expression group that forms the function
body. The result can be used in the same ways as the result of a primitive function.

Table 4-4: Function Call Expressions and Function Header Formats

Valence Forms
niladic f}

monadic fa o f{a}
dyadic afb or f{ab} (A position nextto asemicolon can be empty for calls)
genera fa;b; ..;c} (A position next to a semicolon can be empty for calls)

Operator Definitions

An operator definition consists of an operator header, followed by a colon, followed by the body of the defi-
nition, either an A+ expression or an expression group. The header must be in infix, not general, form.

An operator can be monadic or dyadic, depending on whether it has one argument or two, and the derived
function can also be monadic or dyadic. Consequently there are four formsfor the header. See Table 4-5for
asummary of operator header formats.

Note the parentheses in the forms in “ Operator Header Formats’. While parentheses are not necessary in
operator call expressions, they are necessary in operator definition headers to specify the function expression
part. Compare with “Operator Call Expressions’, page 29.

34 Adobe Acrobat Test of the A+ Language Reference Manual November 2000

4. The Syntax and Semantics of A+

Operator Result

Theresult of adefined operator, which is strictly speaking the result of the derived function, is the result of

Table 4-5: Operator Header For mats

Operator Valence Monadic Derived Function | Dyadic Derived Function

monadic (f op)a a(f op)b

dyadic (f op h)a a(f op h)b

the expression or expression group that forms the body of the definition. The result can be used in the same
ways as the result of a primitive operator.

NOTE: Inthe dyadic form, if the right operand isthe letter g, then it must be a function; otherwise, it must
be data unless every occurrence in the body of the operator syntactically requiresit to be afunction.

Dependency Definitions

A dependency definition consists of aname (the name of the dependency), followed by a colon, followed by
either an A+ expression, or an expression group. Anitemwise dependency has the same form except that the
nameisfollowed by [] wherei can be any unqualified user name (except the name of the dependency).

Dependency Result

Theresult of adependency is either avalue that was assigned to the name, or the result of the expression or
expression group that forms the definition, or, for itemwise dependencies, a combination of the two—see
“Dependencies’, page 186. The results of dependencies are referenced in the same way that values of vari-
ables are referenced, simply by their names.

Well-Formed Expressions

A well-formed expression is one of the basic forms described above, in which all of the constituent expres-
sionsarewell formed. The potential for complicated expressions arises from the fact that every one of these
basic forms produces a result and can therefore be used as a constituent in other forms, except that the right
arrow () can only appear alone and the left arrow ([3) must appear alone unlessit has an expression to its
right. In this building of expressions from simpler ones A+ is very much like mathematical notation.

The concept of the principal subexpression of an expressionisuseful for analysis. Asexecution of an expres-
sion proceedsin the manner described in “ Right-to-Left Order of Execution”, page 31, one can imagine that
parts of the expression are executed and replaced by their results, and then other partsare executed using these
results, and are replaced by their results, and so on. Ultimately the execution comesto the last expression to
be executed, which is called the principal subexpression. Onceit is executed, its value is the value of the
expression. If the principal subexpression isafunction call expression or operator call expression, that func-
tion or derived function is called the principal function.

For example, the principal subexpression of (a+b c¢-d)*10«n isx*y , wherex istheresult of a+b c-d
andy istheresult of 10«n. The power function * isthe principal function.

As asecond example, the principal expression of (x+y;x-y) is(w;z) ,wherewisx+y andz isx-y . In
this case we do not refer to a principal function; the last thing done in executing the expression iswhat is
implied by the strand notation—enclosing wand z and catenating them.

A+ Language Reference November 2000 35

5: Monadic Scalar Functions

Chapter 5. Monadic Scalar Functions

Name Symbol | Page Name Symbol | Page Name Symbol | Page
Absolute Value ” 37 Identity + 38 Pi times N 39
Ceiling 37 Natural log 38 Reciprocal 39
Exponential * 37 Negate - 39 Roll ? 40
Floor b 38 Not ~ 39 Sign « 40

As stated in the introduction, the term integer is used in this manual to indicate not only adomain of values
but also a particular internal representation. To refer to the same domain of values when both integer and
floating point representations are allowed, the term restricted whole number isused. Thesefloating point rep-
resentations need only be tolerably equal to the integers.

Classification of Monadic Scalar Functions

Although they arelisted alphabetically in this chapter, for convenient reference, the A+ monadic scalar prim-
itive functions can be grouped—among other ways, to be sure—in four categories:

* the most common arithmetical functions: Reciprocal, Negate, |dentity;
« other arithmetical functions: Exponential, Natural log, Pi times, Roll;
* extractive functions. Sign, Absolute value, Floor, Ceiling;

* logical function: Not.

Application and Result Shape

All monadic scalar functions produce scalars from scalars, and apply element by element to their arguments:
they are applied to each element independently of the others. Consequently, the shape of theresult isthe same
as the shape of the argument. This behavior isassumed in the following descriptions.

Error Reports

Multiple errors elicit but asingle report. With only one exception, the error reports for monadic primitive
scalar functions are common to all such functions. There are six reports, including interrupt, and each error
report on the following list isissued only if none of the preceding ones apply:

* parse: thiserror class includes valence errors, which must result from three or more argumentsin
braces, since every symbol for amonadic scalar primitive function is also used for a dyadic function;

* value: the argument has no value;
» nondata: the argument is a function or some other nondata object;

* type: the argument is not asimple numeric array—for Not, of restricted whole numbers, and, for Nat-
ural Log, of nonnegative numbers—; the Identity function, however, cannot cause this error report;

» wsfull: theworkspaceis currently not large enough for execution of the function; abareleft arrow (13),
which dictates resumption of execution, causes the workspace to be enlarged if possible;

* interrupt (not an error): the user pressed c twice (onceif A+ was started from ashell) while holding the
Control key down.

36 Adobe Acrobat Test of the A+ Language Reference Manual November 2000

5: Monadic Scalar Functions

An inadvertent left argument results not in a valence error, but in the invocation of a dyadic function that
shares the function symbol.

Absolute value “x

Argument and Result

The argument and result are simple numeric arrays. In Version 2, theresult is aways floating point. In Ver-
sion 4, the result for an integer argument isinteger if possible.

Definition
The absolute value of x. In other words, “x isequivalent to x times Sign of x.

Example

“12.3 ¢3
12.33

Ceiling x
Argument and Result

The argument and result are simple numeric arrays. The result consists of nonfractional numbers, and isinte-
ger if all its elements can be represented that way (including if empty). If some element of the result hastoo
great a magnitude to be represented as an integer, the result is floating point.

Dependency
Comparison tolerance, for most floating point numbers (see “ Comparison Tolerance”, page 105).
Definition

The smallest nonfractional number greater than x or tolerably equal to x, except that x is0when x exceeds
zero but isequal to or lessthan 1e-13 (intolerantly).

Example

10 10.2 10.5 10.98 ¢9 ¢9.2 ¢9.5 ¢9.98, 10+1e-13
10111111 ¢9¢9 ¢9 ¢9 10

Exponential *x
Argument and Result
The argument and result are simple numeric arrays. The result is always floating point.
Definition
e(2.71828...) to the power x.

Example

*¢1012710
3678794412 1 2.718281828 7.389056099 Inf

A+ Language Reference November 2000 37

5: Monadic Scalar Functions

Floor “x

Argument and Result

The argument and result are simple numeric arrays. Theresult consists of nonfractional numbers, and isinte-
ger if al its elements can be represented that way (including if empty), else floating point.

Dependency
Comparison tolerance, for most floating point numbers (see “ Comparison Tolerance”, page 105).
Definition

The largest nonfractional number less than x or tolerably equal to x, except that "x is 0 when x islessthan
zero but is equal to or greater than ¢1e-13 (intolerantly).

Example

710 10.2 10.5 10.98 ¢9 ¢9.2 ¢9.5 ¢9.98, 10-1e-13
1010 10 10 ¢9 ¢10 ¢10 ¢10 10

Identity +x
Argument and Result
The argument, which is also the result, can be any array. (A type error cannot occur.)
Definition
The result isidentical to x.

Example

+'abc’
abc

Natural log x

Argument and Result

The argument and result are simple numeric arrays. The elements of the argument must be nonnegative. The
result is always floating point.

Definition
The natural logarithm of x, i.e., the logarithm of x to the base e (2.71828...).

Example

1101000
0 2.302585093 4.605170186 ¢Inf

38 Adobe Acrobat Test of the A+ Language Reference Manual November 2000

