
Ptex2tex: Flexible Handling of Computer Code in

LATEX Documents

Ilmar Wilbers Hans Petter Langtangen

Simula Research Laboratory

Email: {ilmarw,hpl}@simula.no

May 19, 2011

1 Introduction

1.1 What is Ptex2tex?

Ptex2tex is a tool that allows you to replace LATEX environment declarations
with simple keywords. In a way, Ptex2tex allows you to create LATEX pack-
ages without any sophisticated knowledge on how to write LATEX packages.
The idea behind Ptex2tex is code generation: instead of hiding compli-
cated LATEX constructions in complex LATEX packages, one simply generates
the necessary LATEX commands on the fly, from a compact begin-end en-
vironment indication in the LATEX source. This implies that you have to
preprocess your LATEX source to make an ordinary LATEX file that can be
compiled in the usual way.

The main application of Ptex2tex is for inserting verbatim-style com-
puter code in LATEX documents. The main application of Ptex2tex is for
inserting verbatim-style computer code in LATEX documents. Code can be
copied directly from the source files of the software (complete files or just
snippets), and output from programs can be created and copied into the
documentation as a part of running Ptex2tex. This guarantees that your
LATEX document contains the most recent version of the program code and
its output!

With the default Ptex2tex configuration style, you can switch between
30+ styles for computer code within seconds and just recompile your LATEX
files. Even in a several-hundred pages book it takes seconds to consistently
change various styles for computer code, terminal sessions, output from
programs, etc. This means that you never have to worry about choosing a
proper style for computer/verbatim code in your LATEX document. Just use
Ptex2tex and leave the decision to the future. It takes seconds to change
your mind anyway.

1

Let us look at an example. Say that you are writing a book or an article,
and there is a certain style of box you tend to use frequently. The annoying
thing is that this box has a lot of LATEX syntax connected with it to make
it look like you want. Here is an example involving a blue box:

import sys; print ’script name is’, sys.argv[0]

The LATEX source code for this box needs quite some statements:

\providecommand{\shadedquoteBluesnippet}{}

\renewenvironment{shadedquoteBluesnippet}[1][]{

\definecolor{shadecolor}{rgb}{0.87843, 0.95686, 1.0}

\definecolor{shadetitle}{rgb}{0.5, 0.95686, 1}

\bgroup\rmfamily

\fboxsep=0mm\relax

\begin{shaded}

{{\hfill\tiny\textsf{\textcolor{shadetitle}{Snippet\ \ }}}}

\list{}{\parsep=-2mm\parskip=0mm\topsep=0pt\leftmargin=2mm

\rightmargin=2\leftmargin\leftmargin=4pt\relax}

\item\relax}

{\endlist{\textcolor{shadecolor}{\ }}\end{shaded}\egroup}

\begin{shadedquoteBluesnippet}

\fontsize{9pt}{9pt}

\begin{Verbatim}

import sys; print ’script name is’, sys.argv[0]

\end{Verbatim}

\end{shadedquoteBluesnippet}

\noindent

With Ptex2tex, the box is crated by just enclosing the text (inside the box)
in a certain environment, say mybox:

\bmybox
import sys; print ’script name is’, sys.argv[0]
\emybox

The LATEX code corresponding to the mybox environment, i.e., how the box
should look like, can be defined in a configuration file. It is then easy to
work with boxes, typically contining computer code, in a large document
and with Ptex2tex just use some environment names rather than the full,
complicated LATEX surroundings. That is, the Ptex2tex approach allows
much less code, and makes it easier to concentrate on the contents of the
document we are writing and not the LATEX code necessary to create such a
box. Suppose you want the box to have a completely different look:

2

import sys; print ’script name is’, sys.argv[0]

which in pure LATEX looks like:

\providecommand{\shadedskip}{}

\definecolor{shadecolor}{rgb}{0.87843, 0.95686, 1.0}

\renewenvironment{shadedskip}{

\def\FrameCommand{\colorbox{shadecolor}}\FrameRule0.6pt

\MakeFramed {\FrameRestore}\vskip3mm}{\vskip0mm\endMakeFramed}

\providecommand{\shadedquoteBlue}{}

\renewenvironment{shadedquoteBlue}[1][]{

\bgroup\rmfamily

\fboxsep=0mm\relax

\begin{shadedskip}

\list{}{\parsep=-2mm\parskip=0mm\topsep=0pt\leftmargin=2mm

\rightmargin=2\leftmargin\leftmargin=4pt\relax}

\item\relax}

{\endlist\end{shadedskip}\egroup}\begin{shadedquoteBlue}

\fontsize{9pt}{9pt}

\begin{Verbatim}

import sys; print ’script name is’, sys.argv[0]

\end{Verbatim}

\end{shadedquoteBlue}

Using plain LATEX, you would have to replace the LATEX code, which in
this case is located both before and after the code you want to display. In
addition, you may have several hundred boxes throughout your document.
Changing all the LATEX code for these boxes would require a lot of work,
even if you use search and replace in your editor. Using Ptex2tex you could
simply swap mybox with yourbox, or change the configuration file accordingly
if the change is to be made for all boxes using this style. In this way, you
do not need to make any changes to the document itself at all!

At this point you may think that definition of new LATEX environments,
stylefiles and packages solves the problem outlined above. This is not always
true, as we elaborate on in the “Motivation” section below. Ptex2tex, which
is built on LATEX code generation, apperas to be a simpler and more powerful
technology.

Another major advantage of Ptex2tex is that it provides means to include
text from files, or from parts of files, as well as output from programs ran
at the command line at compile time. Say that you are writing a book
about programming or a manual for a programming tool. You frequently
include computer program code in your document, and also the output of
running programs. While writing the document, you might make changes
to programs and the output of them. Instead of cutting and pasting both

3

the actual program and the output every time it is changed, using Ptex2tex,
the only thing you need to do is to run ptex2tex on the document. Let’s
look at an example. We include the following in the .p.tex document:

@@@CODE division.py def@if
The output from running this function with a=2 and b=0 is:
@@@CMD python division.py #0

Now, the file division.py itself as well as the output from running it will be
included in our document, and the result looks as follows:

def division(a, b):
try:

return a/float(b)
except ZeroDivisionError:

print ’cannot divide by zero’
return None

The output from running this function with a=2 and b=0 is:

Terminal

cannot divide by zero
None

This makes Ptex2tex a very convenient tool, particularly when writing large
LATEX documents about computer programming where one needs to include
a lot of programs and code snippets.

1.2 Motivation

Why do we not simply define LATEX environments and use these directly in
our files? We consider Python more powerful and convenient than LATEX for
generating environments. Also, including text from file using search expres-
sions as well as including results from programs ran at the command line are
very challenging, if not impossible, tasks in LATEX. Imagine that you want to
include a certain paragraph or code block from a file. Using plain LATEX this
means copying the necessary text from the source file, and pasting it into
the LATEX file. If you make changes to the file you copied from, you have to
remember to copy the text you need a second time. Even though there exist
ways of including whole files in LATEX (verbatiminput), it is very difficult to
include a part of the file. Also, you might want the text to be included to
be typeset in a certain way, something that cannot be achieved by a simple
verbatiminput. The point is that even though these things could be done
in LATEX using classes, for instance, writing them in Python is much easier.
As Ptex2tex uses Python configuration files to define commands, one does
not even have to know Python in order to extend and tailor Ptex2tex.

4

1.3 Structure of this tutorial

This tutorial is divided in four sections. Following the introduction is section
about running the ptex2tex program and generating native LATEX code,
followed by a section on including files and output from program execution.
Finally, we will explain how the Ptex2tex environments work and how we
can configure them.

2 The prepocessing step

When using Ptex2tex, your LATEX source file must have the extension .p.tex.
All edits to your text must be done in this file. Running the program
ptex2tex on the .p.tex file produces an ordinary LATEX file, which can be
compiled to a .dvi and .pdf file in the usual way. However, if you apply
any of the minted code environments in your .p.tex file (Minted_Python for
instance), you must run latex with the option -shell-escape option. Most
editors will recognize a .p.tex file as a LATEX or TEX file and invoke relevant
styles.

Let us start by looking at what happens when we run the command

Terminal

ptex2tex test.p.tex

on the command line. If the extension of the file is not .p.tex, the program
will exit with an error message. If no extension is given, that is, we run
ptex2tex test, it is assumed that we are looking for the file test.p.tex.

The first step of Ptex2tex consists of running Trent Mick’s preprocessor.
This is a Python package that allows us to use preprocessor statements
in files, just like the preprocessor statements known from the C and C++

languages. These statements take the form of normal comments in the
source file, but when running preprocessor, these are treated in a special
way. For instance, we can include whole files, or include certain blocks of
test or code in our file only when a special requirement is met, otherwise
this text or code is ignored. The statements need to be on a separate line.
The statements that are implemented in the current version (which is 1.1.0
as of January 2009), are:

• % #define VAR [VALUE]

• % #undef VAR

• % #ifdef VAR

• % #ifndef VAR

• % #if EXPRESSION

5

• % #elif EXPRESSION

• % #else

• % #endif

• % #error ERROR_STRING

• % #include "FILE"

The source code for the present document, doc.p.tex, includes a few of these
statements as an example. (For now, it is not possible to include arguments
to preprocess within Ptex2tex, meaning that only the input file and output
file are specified, with an additional argument to force the preprocessing by
using the -f flag for preprocess). For further documentation, please visit
the website for this package1. The input file type to preprocess is .p.tex

and the output is .tmp1. If preprocess is not available on the system, this
step is skipped. Preprocessor statements in the file will then be treated as
comments, and the file is copied directly to .tmp1.

3 Including files and output from program execu-

tion

The second step is to examine and execute the Ptex2tex keywords for in-
cluding files and for including the output from executed programs. For both
these two stages, the input file type will be .tmp1 and the output file type
is .tmp2.

3.1 @@@CODE

A line starting with this statement indicates that a file containing a program
(that is, computer code) is to be included in the document. If there is only
one argument after the statement (the file name), the whole file is included.
If a second argument is included, it is split with respect to the character
’@’. If only an expression in front of this character is given, only the part
of the file starting with that argument and ending with the end of the file
is included. If an expression after the character is given as well, the part
of the file starting with the first expression and ending at the beginning of
the second expression is included. This means that the included part ends
before the text in the second expression, hence that text is not included.
When searching the file, the first occurrence of the start expression is used.
Ptex2tex then starts scanning for the stop expression from the beginning of
the location of the start expression, which will denote the end of the region

1http://trentm.com/projects/preprocess

6

to be copied into the text. White-spaces in front of and at the end of the
expressions before and after ’@’ are ignored.

The searching in the file for start and stop expressions is done using the
Python function find on strings. Hence, start/stop expressions are com-
pared directly to the text in the file. In the ctex2tex script, which Ptex2tex
is based on, regular expressions were used.

The environment keys ’pro’ and ’sni’ are short for ’program’ and ’snip-
pet’, respectively, indicating that the former is meant to be used for type-
setting a complete program, whereas the latter is meant for a program snip-
pet, for instance a function. Both these Ptex2tex environments are for
typesetting code. Environment keys here means keywords that Ptex2tex
substitutes with actual LATEX code later. More information about Ptex2tex
environments is given in section 4. If the whole file is included, the Ptex2tex
environment key ’pro’ is used. Otherwise, the environment key ’sni’ is used.
An exception here is in the case that a second ’@’ is used after the stop
expression. This indicates that the ’pro’ environment key is to be used, in-
stead of ’sni’. The reason one might wish to typeset only a part of a file as a
full program, is that one can use the search expressions for removing details
in the full program, such as headers and test functions, that are irrelevant or
confusing in the document, but still are considered important for the actual
program.

It is important to differ between the @@@CODE statement and the include
statement provided with the preprocessor package. The latter allows us to
include a file by % #include FILE, but does not embed the copied text in
special LATEX environments, that is, the whole file is included as is.

We will exemplify this for the file myprog.py. Let’s look at the output of
some different options:
’@@@CODE myprog.py’ includes the whole file:

#!/usr/bin/env python

import math, sys

"""
This is a small script containing a simple function.
"""

def myfunc(x):
result = None
if isinstance(x, (list, tuple)):

result = []
for i in x:

result.append(math.fabs(i))
elif isinstance(x, (int, float)):

result = math.fabs(x)
return result

print myfunc(-1.0)
print myfunc((2, -3.))
try:

result = myfunc([eval(x) for x in (sys.argv[1:])])

7

if result: print result
except:

pass

’@@@CODE myprog.py def myfunc’ and ’@@@CODE myprog.py def myfunc @’ in-
cludes everything from the first instance of the string ’def myfunc’ to the
end of the file:

def myfunc(x):
result = None
if isinstance(x, (list, tuple)):

result = []
for i in x:

result.append(math.fabs(i))
elif isinstance(x, (int, float)):

result = math.fabs(x)
return result

print myfunc(-1.0)
print myfunc((2, -3.))
try:

result = myfunc([eval(x) for x in (sys.argv[1:])])
if result: print result

except:
pass

’@@@CODE myprog.py if isinstance@elif’ includes everything from the first
instance of the string ’if isinstance’ up to , but not including, the first in-
stance of ’elif’ after ’if isinstance’.

if isinstance(x, (list, tuple)):
result = []
for i in x:

result.append(math.fabs(i))

3.2 @@@DATA

@@@DATA is essentially the same as @@@CODE, but different environment keys
are used: ’pro’ becomes ’dat’ and ’sni’ becomes ’dsni’. These are short for
’Data’ and ’Data snippet’, respectively. Whereas @@@CODE is meant to be
used with program code, @@@DATA is meant to be used with data files that
are not code, for instance input files to, and output files from, computer
programs.

3.3 @@@CMD

A line starting with the statement @@@CMD indicates that we want to include
the output from a shell command with command-line arguments. All text
after the statement @@@CMD will be executed, except the text after (and in-
cluding) ’#’. The character after ’#’ defines how much of the commands

8

we want to execute should be part of the final text to be included in our
document. Any whitespaces after the character are ignored. There are five
possible values:

1. ’0’ omits the whole command that is to be executed

2. ’1’ the command is included and the full path stripped

3. ’2’ the command is included and the full path is not stripped

4. ’3’ the command is included except for the name of the program being
called (the first word) and the full path is stripped

5. ’4’ the command is included except for the name of the program being
called (the first word) and the full path is not stripped.

For options ’1’ and ’3’ a simple regular expression search is used to allow
statements like ’python code/myprog.py’ to be printed as ’python myprog.py’

and ’myprog.py’, respectively, that is, we remove the path to the directory
where the program is located, allowing us to run programs in a different
directory than where we are running Ptex2tex, without the output reflect-
ing this. For options ’3’ and ’4’ the first word is simply stripped, allowing
statements like ’python code/myprog.py’ to be printed as ’myprog.py’ and
’code/myprog.py’, respectively. The default option is ’3’, and the terminal
session is typeset using the environment key ’sys’ (for “system”).

Again, let us exemplify this. Running ’python myprog.py -1 2 -5’ in a
shell gives us the following output:

Terminal

1.0
[2.0, 3.0]
[1.0, 2.0, 5.0]

Instead of copying and pasting this into the documents we are creating,
meaning we would have to update this every time the code in myprog.py is
changed, we simply add the following line: ’@@@CMD python myprog.py -1 2 -5’.
The result looks like this:

Terminal

myprog.py -1 2 -5
1.0
[2.0, 3.0]
[1.0, 2.0, 5.0]

Before looking at the additional options, let us assume that the file myprog.py
is located in a subfolder myfolder, meaning that we would have to run the
command ’python myfolder/myprog.py -1 2 -5’. Adding additional op-
tions to this commands gives the following results:

9

’@@@CMD python myfolder/myprog.py -1 2 -5 # 0’ omits the whole command
that is called:

Terminal

1.0
[2.0, 3.0]
[1.0, 2.0, 5.0]

’@@@CMD python myfolder/myprog.py -1 2 -5 # 1’ removes the additional
folders:

Terminal

python myprog.py -1 2 -5
1.0
[2.0, 3.0]
[1.0, 2.0, 5.0]

’@@@CMD python myfolder/myprog.py -1 2 -5 # 2’ doesn’t remove anything:

Terminal

python myfolder/myprog.py -1 2 -5
1.0
[2.0, 3.0]
[1.0, 2.0, 5.0]

’@@@CMD python myfolder/myprog.py -1 2 -5 # 3’ removes the additional
folders and the first word after ’@@@CMD’ (which is ’python’):

Terminal

myprog.py -1 2 -5
1.0
[2.0, 3.0]
[1.0, 2.0, 5.0]

’@@@CMD python myfolder/myprog.py -1 2 -5 # 4’ removes only the first word
after ’@@@CMD’:

Terminal

myfolder/myprog.py -1 2 -5
1.0
[2.0, 3.0]
[1.0, 2.0, 5.0]

We give a table with an overview of the different Ptex2tex environments
that the @@@ keywords are mapped to in Table 1.

10

Keyword Ptex2tex key

@@@CODE without search expressions pro
@@@CODE with start or start@ sni
@@@CODE with start@stop sni
@@@CODE with start@@ pro
@@@CODE with start@stop@ pro
@@@DATA without search expressions dat
@@@DATA with start or start@ dsni
@@@DATA with start@stop dsni
@@@DATA with start@@ dat
@@@DATA with start@stop@ dat
@@@CMD with any parameters sys

Table 1: Mapping of keywords to environments

4 Ptex2tex environments

This section explains the use of the Ptex2tex environments. Ptex2tex envi-
ronments consist of text that we want to typeset in a special way (typical
computer code), surrounded by keywords for defining the beginning and
the end of the text to be typeset. Ptex2tex replaces these keywords with
the LATEX commands that we have configured the Ptex2tex environment in
question to be associated with. We will now explain this in more detail.

4.1 How to use the environments

Ptex2tex environments are described by several keywords. In the previous
section we looked at the ones starting with ’@@@’, and explained that these
keywords were replaced with different Ptex2tex environment keys. These en-
vironment keys can have different names, we already encountered ’pro’, ’sni’,
’dat’, and ’sys’. These are environment keys that are built into Ptex2tex
and need to be there, as they are used for the ’@@@’ keywords, but we can
define what the LATEX environment they are translated to should look like,
as we will see shortly. In addition, we can add any new environment keys
as we please, and some are already defined by default.

Let us have a closer look at the environment key ’pro’. For every en-
vironment key, two keywords can be used in the document we are working
with. For ’pro’ these would be \bpro to indicate where we want to start
the typesetting for that environment, and the other is \epro, indicating the
end. In general, for an environment key ’xxx’ there will be keywords \bxxx

and \exxx where ’b’ and ’e’ stand for ’begin’ and ’end’, respectively. When
Ptex2tex is scanning the documents, these two keywords are replaced with
the actual LATEX code that makes up the environment. Let us once again

11

look at an example. The lines

\bpro
//This text is typeset as computer code.
\epro

will result in the following box:

//This text is typeset as computer code.

The advantage is that we now can change the way this box should look
like without making any changes in the document itself, as described in
the next section. Also, if we want to change the environment to be used,
say for instance from ’pro’ to ’sys’, instead of changing up to several lines
of LATEX code, we simply change the keywords from \bpro and \epro to
\bsys and \esys. This step results in a .tex file that can be compiled with
LATEX. Normally, this is done in the usual way: !bsys Unix/DOS¿ latex my-
file.tex !esys However, if the minted LATEX package is included (needed for
the Minted_* environments in the default .ptex2tex.cfg configuration file),
one needs to apply the -shell-escape option to latex: !bsys Unix/DOS¿
latex -shell-espace myfile.tex !esys The Pygments program when minted.sty

is included, and this program cannot be invoked without the -shell-escape

option. In the next section we show more of the details behind the environ-
ment keys. Note that the minted package must be explicitly included in a
usepackage statement by the writer of the Ptex2tex file.

4.2 The configuration file

As mentioned earlier, the idea of Ptex2tex is to allow the user to write
short keywords for parts of the document that are to be typeset in a special
way. When running Ptex2tex, these keywords are then replaced with the
full LATEX commands, resulting in plain .tex files. For instance may the
keyword \bpy be replaced with

\plin

and \epy with

\elin

Some keywords will also output additional LATEX code for defining LATEX en-
vironments once for every file, more on this later. We will differentiate be-
tween Ptex2tex environments, which we are about to explain in detail, and
LATEX environments, which refer to the LATEX commands that we would have
to use instead of the Ptex2tex keywords.

All Ptex2tex environments available are defined in a configuration file.
When running Ptex2tex for the first time, or if the file is removed since
the last time Ptex2tex was run, this configuration file will be placed in the

12

user’s home directory. The file is named .ptex2tex.cfg, indicating that it is
hidden. The file is written in the Python ConfigParser language2 and will
be referred to as the global environment file. This file is read every time
one runs Ptex2tex. In addition to this file, the .ptex2tex.cfg file in the
directory where the .p.tex file currently being processed is located, is also
evaluated, if it exists. This file is referred to as the local environment file.
The global environment file is evaluated first, and then the local one. This
means that if a specific environment is defined both in the global and local
environment files, the environment from the local file will overwrite the one
from the global file.

In this way, one can make changes to an environment that will only affect
the local .p.tex files. At the same time, one can make changes to the global
file, but these changes will only matter if the environment it concerns is not
overwritten in the local environment files. One can thus add environments
to the global file and they will be available when running Ptex2tex from any
location.

The configuration file is made up of different sections, one for each envi-
ronment and one for the mapping of environment keys to the corresponding
environment. Each environment can contain the following options:

breplace
ereplace
newenv
define
fontsize
bstretch

We refer to the ptex2tex.cfg file in the lib/ptex2tex directory to see a large
number of examples of how these environments can be used.

Each section has a heading enclosed by brackets. This heading will also
be the name of the environment. The options for this environment should
follow on the lines below. For instance, to define the Ptex2tex environment
’Extra’ and the option breplace, we would write:

[Extra]
breplace = \begin{Verbatim}

In addition to the sections defining the environments, there is a section
[names]. In this section we map environment keys to Ptex2tex environments.
For instance, if we want the key ’pro’ to be associated with the environment
’Bluebox’, we write:

[names]
pro = Bluebox

Hence we can use \bpro to indicate the beginning of the ’pro’ environment,
and \epro to indicate the end. We can set multiple keys to point to the
same environment:

2http://docs.python.org/lib/module-ConfigParser.html

13

[names]
pro = Bluebox
tmp = Bluebox

If we try to assign multiple environment to the same key, only the last one
is used:

[names]
pro = Bluebox
pro = Graybox

4.3 Defining new environments

A Ptex2tex environment in the configuration file is defined by a section head-
ing and several options. A minimum requirement of an environment is that
the options breplace and ereplace are defined. Hence, for the environment
’Extra’, the following lines should exist and be defined:

[Extra]
breplace = \begin{verbatim}
erplace = \end{verbatim}

In this case they define a simple Verbatim environment. breplace and
ereplace control what LATEX commands that should be returned at the
beginning and at the end of the Ptex2tex environment, respectively. Note
that only defining the environment is not enough, the keywords to be used
with this environment also need to be defined in the ’names’ section:

[names]
ext = Extra

Now, the keywords \bext and \eext will be replaced with the text defined
in breplace and ereplace.

We differ between two categories of environments in Ptex2tex: those
that make use of the \newenvironment keywords in LATEX, and those who
don’t, but instead use other LATEX commands like \minipage and different
packages like fancyverb or framed as well as different box environments.

The problem with Ptex2tex environments that use \newenvironment is
that LATEX needs this environment to be defined, but not more than once,
or it will issue an error. Therefore, when replacing the first occurrence of
each environment keyword (for instance ’bpro’), a definition is added as
well. This is the keyword newenv in the section for an environment. Default,
this is an empty string. When running Ptex2tex on multiple files, and then
combining these files in a single document, this environment will be defined
multiple times, once for every .p.tex document. Since we run Ptex2tex
on one file at the time, Ptex2tex cannot know if a specific environment is
defined earlier.

In order to get around this limitation, we use \renewenvironment instead
of \newenvironment. But since it is not possible to renew an environment
unless it already is defined, this by itself does not solve the problem. But if
we first add the line

14

\providecommand{\shadedquote}{}

we have created a way around this. What it does is to create a command
shadedquote given that shadedquote is not already defined. There is no
equivalent
(\provideenvironment) for environments, but since \renewenvironment sim-
ply checks if the name of the environment (shadedquote) is defined, not if it
is defined as an environment, this works.

When defining new environments as described above, the name of the
environment must be unique in the configuration file. For example, “shad-
edquote” must not be defined in another environment. Ptex2tex is normally
able to detect such problems.

It is also possible to use an environment that is defined elsewhere, say
in third-party LATEX package. One can then use the option define. If it is
set to False, it is assumed that the LATEX environment is defined externally,
and Ptex2tex will not define this environment.

There are two types of boxes supported by the standard configuration file
ptex2tex.cfg. One kind (e.g., ’Blue’) allows the text in the box to be split
over pages, while the other kind (e.g., ’Blue sp’) does not allow splitting,
which often forces LATEX to move the box to the next space, leaving a lot of
white space on the preceding page.

Please note that the names of the environments should not contain num-
bers, only letters. Naming an environment \shadedquote2 makes the inter-
preter think that we are using \shadedquote followed by the number 2.

It is possible to use so-called variable interpolation in the configuration
file. This means that one can use the name of one option in another option
in the section, and the value for that option will then be included in the first
option, for example:

[SomeBox]
breplace = \begin{Verb}[baselinestretch=%(bstretch)s]
bstretch=0.85

What happens here is that the %(bstretch)s part is substituted with the
value of the option ’bstretch’. The ’%’ indicates that the variable within the
following parenthesis is to be interpolated. The ’s’ after the last parenthesis
means that the option to be inserted is a string. See the ptex2tex.cfg file
in lib/ptex2tex for numerous examples.

Often, the option text for ’breplace’ or ’ereplace’ spans several lines (of
LATEX code). It is then important that the text for the lines following the
first use the same indentation. It is possible to comment out some of the
lines in the configuration file by using a ’#’ at the beginning of the line.
Any other position won’t work, as it will be parsed as part of the option
instead. If you need to use comments in the LATEX code, you need to use
two ’%’, as only one will be considered as variable interpolation, and will
likely cause an error. In the previous code example we show some of the
mentioned points.

15

For further documentation of Python Config Files, see the Python Li-
brary Reference.

All options within a section of the configuration file are parsed within
Ptex2tex. You can define your own options beyond the six mentioned, but
this will result in a warning.

4.4 Remarks about LATEX packages

Note that some of the environments present in the environment configu-
ration file require certain LATEX packages to be available. Specifically, you
should use the following lines in the header and make sure the corresponding
packages are installed on your system:

\usepackage{relsize,fancyvrb,moreverb,epsfig,framed}
\usepackage{color,listings,codehighlight}
%\usepackge{minted}

Many of the stylefiles are found in the latex/styles directory of the Ptex2tex
source. For example, codehighlight.sty is only found here and must be
copied to the right directory for LATEX packages.

The minted package requires the Python tool pygments to be installed and
latex to be run with the extra option -shell-escape. Therefore the minted

package is optional. It is only demanded for the Minted_* environments in
the default .ptex2tex.cfg configuration file.

The Ptex2tex package comes with a LATEX style file ptex2tex.sty con-
taining the above usepackage commands, plus some tweaks of packages. If
the ptex2tex.sty file is installed correctly so that LATEX can find it, one can
simply use

\usepackage{ptex2tex}

or

\usepackage{ptex2tex,minted}

if the Minted_* environments are desired for typesetting code.
One can also just copy the ptex2tex.sty file to the current working direc-

tory. This file, as well as the .eps files used for the Ptex2tex environments
’Warnings’, ’Rules’, and ’Summation’, are located in the folder latex in the
source code for Ptex2tex. The installation script for the package will try to
install these to the computers’ LATEX folders, see the README file.

4.5 Additional keywords

In addition to the keywords starting with @@@ and the keywords associated
with beginning and ending Ptex2tex environments, there is another keyword
available, namely \code. This keyword can be used anywhere in the text,
as long as it is contained within a single line. This allows the use of any

16

character, we can for instance write \code{@#_%} without LATEX giving us
any errors. The result is similar to the \texttt LATEX command, but it has
nicer typesetting of (for instance) underscores. The code command is really
just a slightly modified normal inline verbatim construction where the font
size can be controlled. Moreover, the escape character in LATEX, which is
\, is removed in front of the characters ’#’, ’%’, ’@’, ’$’ and ’_’. Writing
\code{%} results in the text for the rest of the line after the character %

being marked as a comment in most editors, which is confusing. Writing
\code{$} results in the text for the rest of the document being marked as
a math environment. Using \code{\%} and \code{\$} instead gives us the
same result in the final document without this problem appearing in our
editor.

4.6 Mapping of keywords to environments

The default mapping between Ptex2tex keywords and environments is in-
cluded for reference:

computer code in quote environment (gives a left margin):
ccq = CodeIndented
computer code with no left margin:
cc = Code
computer code with line numbering:
ccl = CodeLineNo
program box:
pro = BlueBar
pypro = Minted_Python
cpppro = Minted_Cpp
cpro = Minted_C
fpro = Minted_Fortran
computer code box (snippet, not complete program):
cod = Blue
pycod = Minted_Python
cppcod = Minted_Cpp
ccod = Minted_C
fcod = Minted_Fortran
computer code box (snippet, not complete program):
sni = Blue
data file:
dat = CodeIndented
data file snippet:
dsni = CodeIndented
system commands (in terminal window):
sys = CodeTerminal
one-line system command (in terminal window):
slin = Code
IPython interactive session:
ipy = Code
standard interactive python session:
py = Code
execution of a Python program ("run python"):
rpy = CodeTerminal
one-line program code:
plin = Code
verbatim environment:
ver = Verb
warning box:
warn = Warnings
tip box:
rule = Tip
note box:
summ = Note

17

You are free to define completely new keywords (and environments) in the
configuration file.

4.7 Demo of the different environments

There is a test script testconfig.py that can read a configuration file and
make a LATEX demo of all environments in that file. Just run the script
in a directory with a .ptex2tex.cfg file. The result is a file tmp_names with
definition of new environment keys pointing to all environments found in the
configuration file. This tmp_names can be appended to your .ptex2tex.cfg.
The script testconfig.py also makes a file tmp_latex which can be copied
into any LATEX in Ptex2tex format (i.e., a .p.tex file) to see a demo of the
environments. Below is such a LATEX demo.
Here is a demo of the environment Verb:

Here is some Python code

def height_and_velocity(t, v0):

"""Invoke some advanced math computations."""

g = 9.81 # acceleration of gravity

y = v0*t - 0.5*g*t**2 # vertical position

v = v0 - g*t # vertical velocity

return y, v

class Wrapper:

def __init__(self, func, alternative_kwarg_names={}):

self.func = func

self.help = alternative_kwarg_names

def __call__(self, *args, **kwargs):

Translate possible alternative keyword argument

names in kwargs to those accepted by self.func:

func_kwargs = {}

for name in kwargs:

if name in self.help:

func_kwargs[self.help[name]] = kwargs[name]

else:

func_kwargs[name] = kwargs[name]

return self.func(*args, **func_kwargs)

height_and_velocity = Wrapper(height_and_velocity,

{’time’: ’t’,

’velocity’: ’v0’,

18

’initial_velocity’: ’v0’})

print height_and_velocity(initial_velocity=0.5, time=1)

Here is a demo of the environment CodeRule:

Code

Here is some short Python code

def height_and_velocity(t, v0):
"""Invoke some advanced math computations."""
g = 9.81 # acceleration of gravity
y = v0*t - 0.5*g*t**2 # vertical position
v = v0 - g*t # vertical velocity
return y, v

print height_and_velocity(initial_velocity=0.5, time=1)

Here is a demo of the environment CodeTerminal:

Terminal

Here is some short Python code

def height_and_velocity(t, v0):
"""Invoke some advanced math computations."""
g = 9.81 # acceleration of gravity
y = v0*t - 0.5*g*t**2 # vertical position
v = v0 - g*t # vertical velocity
return y, v

print height_and_velocity(initial_velocity=0.5, time=1)

Here is a demo of the environment Code:
Here is some Python code

def height_and_velocity(t, v0):
"""Invoke some advanced math computations."""
g = 9.81 # acceleration of gravity
y = v0*t - 0.5*g*t**2 # vertical position
v = v0 - g*t # vertical velocity
return y, v

class Wrapper:
def __init__(self, func, alternative_kwarg_names={}):

self.func = func
self.help = alternative_kwarg_names

def __call__(self, *args, **kwargs):
Translate possible alternative keyword argument
names in kwargs to those accepted by self.func:
func_kwargs = {}
for name in kwargs:

if name in self.help:
func_kwargs[self.help[name]] = kwargs[name]

else:
func_kwargs[name] = kwargs[name]

return self.func(*args, **func_kwargs)

height_and_velocity = Wrapper(height_and_velocity,
{’time’: ’t’,
’velocity’: ’v0’,
’initial_velocity’: ’v0’})

print height_and_velocity(initial_velocity=0.5, time=1)

19

Here is a demo of the environment CodeLineNo:

1 # Here is some Python code
2

3 def height_and_velocity(t, v0):
4 """Invoke some advanced math computations."""
5 g = 9.81 # acceleration of gravity
6 y = v0*t - 0.5*g*t**2 # vertical position
7 v = v0 - g*t # vertical velocity
8 return y, v
9

10 class Wrapper:
11 def __init__(self, func, alternative_kwarg_names={}):
12 self.func = func
13 self.help = alternative_kwarg_names
14

15 def __call__(self, *args, **kwargs):
16 # Translate possible alternative keyword argument
17 # names in kwargs to those accepted by self.func:
18 func_kwargs = {}
19 for name in kwargs:
20 if name in self.help:
21 func_kwargs[self.help[name]] = kwargs[name]
22 else:
23 func_kwargs[name] = kwargs[name]
24

25 return self.func(*args, **func_kwargs)
26

27 height_and_velocity = Wrapper(height_and_velocity,
28 {’time’: ’t’,
29 ’velocity’: ’v0’,
30 ’initial_velocity’: ’v0’})
31

32 print height_and_velocity(initial_velocity=0.5, time=1)

Here is a demo of the environment CodeIndented:

Here is some Python code

def height_and_velocity(t, v0):
"""Invoke some advanced math computations."""
g = 9.81 # acceleration of gravity
y = v0*t - 0.5*g*t**2 # vertical position
v = v0 - g*t # vertical velocity
return y, v

class Wrapper:
def __init__(self, func, alternative_kwarg_names={}):

self.func = func
self.help = alternative_kwarg_names

def __call__(self, *args, **kwargs):
Translate possible alternative keyword argument
names in kwargs to those accepted by self.func:
func_kwargs = {}
for name in kwargs:

if name in self.help:
func_kwargs[self.help[name]] = kwargs[name]

else:
func_kwargs[name] = kwargs[name]

return self.func(*args, **func_kwargs)

height_and_velocity = Wrapper(height_and_velocity,
{’time’: ’t’,
’velocity’: ’v0’,
’initial_velocity’: ’v0’})

print height_and_velocity(initial_velocity=0.5, time=1)

Here is a demo of the environment CodeIndented10:

Here is some Python code

20

def height_and_velocity(t, v0):
"""Invoke some advanced math computations."""
g = 9.81 # acceleration of gravity
y = v0*t - 0.5*g*t**2 # vertical position
v = v0 - g*t # vertical velocity
return y, v

class Wrapper:
def __init__(self, func, alternative_kwarg_names={}):

self.func = func
self.help = alternative_kwarg_names

def __call__(self, *args, **kwargs):
Translate possible alternative keyword argument
names in kwargs to those accepted by self.func:
func_kwargs = {}
for name in kwargs:

if name in self.help:
func_kwargs[self.help[name]] = kwargs[name]

else:
func_kwargs[name] = kwargs[name]

return self.func(*args, **func_kwargs)

height_and_velocity = Wrapper(height_and_velocity,
{’time’: ’t’,
’velocity’: ’v0’,
’initial_velocity’: ’v0’})

print height_and_velocity(initial_velocity=0.5, time=1)

Here is a demo of the environment PyHighlight:

1 # Here is some Python code

3 def height_and_velocity (t, v0):

""" Invoke some advanced math computations."""

5 g = 9.81 # acceleration of gravity

y = v0*t - 0.5*g*t**2 # vertical position

7 v = v0 - g*t # vertical velocity

return y, v

9

class Wrapper:

11 def __init__(self , func ,

alternative_kwarg_names ={}):

self.func = func

13 self.help = alternative_kwarg_names

15 def __call__(self , *args , **kwargs):

Translate possible alternative keyword

argument

17 # names in kwargs to those accepted by

self.func:

func_kwargs = {}

19 for name in kwargs:

if name in self.help:

21 func_kwargs[self.help[name]] =

kwargs[name]

else:

23 func_kwargs[name] = kwargs[name]

21

25 return self.func(*args , **func_kwargs)

27 height_and_velocity = Wrapper(height_and_velocity ,

{’time’: ’t’,

29 ’velocity ’: ’v0’,

’initial_velocity ’:

’v0’})

31

print height_and_velocity (initial_velocity=0.5, time=1)

Here is a demo of the environment CppHighlight:

Here is some Python code

2

def height_and_velocity (t, v0):

4 """Invoke some advanced math computations."""

g = 9.81 # acceleration of gravity

6 y = v0*t - 0.5*g*t**2 # vertical position

v = v0 - g*t # vertical velocity

8 return y, v

10 class Wrapper:

def __init__(self , func ,

alternative_kwarg_names ={}):

12 self.func = func

self.help = alternative_kwarg_names

14

def __call__(self , *args , **kwargs):

16 # Translate possible alternative keyword

argument

names in kwargs to those accepted by

self.func:

18 func_kwargs = {}

for name in kwargs:

20 if name in self.help:

func_kwargs[self.help[name]] =

kwargs[name]

22 else:

func_kwargs[name] = kwargs[name]

24

return self.func(*args , **func_kwargs)

26

height_and_velocity = Wrapper(height_and_velocity ,

28 {’time’: ’t’,

’velocity ’: ’v0’,

30 ’initial_velocity ’:

’v0’})

32 print height_and_velocity (initial_velocity=0.5, time=1)

Here is a demo of the environment PyMatlab:

22

Here is some Python code

2

def height_and_velocity (t, v0):

4 """ Invoke some advanced math computations ."""

g = 9.81 # acceleration of gravity

6 y = v0*t - 0.5*g*t**2 # vertical position

v = v0 - g*t # vertical velocity

8 return y, v

10 class Wrapper:

def __init__(self , func , alternative_kwarg_names ={}):

12 self.func = func

self.help = alternative_kwarg_names

14

def __call__(self , *args , ** kwargs):

16 # Translate possible alternative keyword argument

names in kwargs to those accepted by self.func:

18 func_kwargs = {}

for name in kwargs:

20 if name in self.help:

func_kwargs[self.help[name]] =

kwargs[name]

22 else:

func_kwargs[name] = kwargs[name]

24

return self.func(*args , ** func_kwargs)

26

height_and_velocity = Wrapper(height_and_velocity ,

28 {’time’: ’t’,

’velocity ’: ’v0’,

30 ’initial_velocity ’: ’v0’})

32 print height_and_velocity (initial_velocity =0.5, time =1)

Here is a demo of the environment PyBash:

Here is some Python code

2

def height_and_velocity (t, v0):

4 """Invoke some advanced math computations."""

g = 9.81 # acceleration of gravity

6 y = v0*t - 0.5*g*t**2 # vertical position

v = v0 - g*t # vertical velocity

8 return y, v

10 class Wrapper:

def __init__(self , func ,

alternative_kwarg_names ={}):

12 self.func = func

self.help = alternative_kwarg_names

14

def __call__(self , *args , ** kwargs):

23

16 # Translate possible alternative keyword

argument

names in kwargs to those accepted by

self.func:

18 func_kwargs = {}

for name in kwargs:

20 if name in self.help:

func_kwargs[self.help[name]] =

kwargs[name]

22 else:

func_kwargs[name] = kwargs[name]

24

return self.func(*args , ** func_kwargs)

26

height_and_velocity = Wrapper(height_and_velocity ,

28 {’time ’: ’t’,

’velocity ’: ’v0 ’,

30 ’initial_velocity ’:

’v0 ’})

32 print height_and_velocity (initial_velocity =0.5, time=1)

Here is a demo of the environment PySWIG:

Here is some Python code

2

def height_and_velocity (t, v0):

4 """Invoke some advanced math computations."""

g = 9.81 # acceleration of gravity

6 y = v0*t - 0.5*g*t**2 # vertical position

v = v0 - g*t # vertical velocity

8 return y, v

10 class Wrapper:

def __init__(self , func ,

alternative_kwarg_names ={}):

12 self.func = func

self.help = alternative_kwarg_names

14

def __call__(self , *args , **kwargs):

16 # Translate possible alternative keyword

argument

names in kwargs to those accepted by

self.func:

18 func_kwargs = {}

for name in kwargs:

20 if name in self.help:

func_kwargs[self.help[name]] =

kwargs[name]

22 else:

func_kwargs[name] = kwargs[name]

24

return self.func(*args , **func_kwargs)

24

26

height_and_velocity = Wrapper(height_and_velocity ,

28 {’time’: ’t’,

’velocity ’: ’v0’,

30 ’initial_velocity ’:

’v0’})

32 print height_and_velocity (initial_velocity=0.5, time=1)

Here is a demo of the environment Minted_Python:

Here is some Python code

def height_and_velocity(t, v0):
"""Invoke some advanced math computations."""
g = 9.81 # acceleration of gravity
y = v0*t - 0.5*g*t**2 # vertical position
v = v0 - g*t # vertical velocity
return y, v

class Wrapper:
def __init__(self, func, alternative_kwarg_names={}):

self.func = func
self.help = alternative_kwarg_names

def __call__(self, *args, **kwargs):
Translate possible alternative keyword argument
names in kwargs to those accepted by self.func:
func_kwargs = {}
for name in kwargs:

if name in self.help:
func_kwargs[self.help[name]] = kwargs[name]

else:
func_kwargs[name] = kwargs[name]

return self.func(*args, **func_kwargs)

height_and_velocity = Wrapper(height_and_velocity,
{’time’: ’t’,
’velocity’: ’v0’,
’initial_velocity’: ’v0’})

print height_and_velocity(initial_velocity=0.5, time=1)

5 Support

Please contact ilmarw@simula.no for bug reports, feature requests and gen-
eral help.

25

