
PLWM – The Pointless Window Manager

Peter Liljenberg

Copyright c© 1999-2002 Peter Liljenberg
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Table of Contents

Introduction . 1

1 Philosophy and Excuses . 2

2 Running PLWM . 3

3 Configuration . 5

4 Core Classes. 6
4.1 WindowManager Public Attributes . 6
4.2 Screen Public Attributes . 7
4.3 Client Public Attributes . 7

5 Event Handling . 9
5.1 Event Objects. 9
5.2 EventFetcher. 9
5.3 EventDispatcher . 11

6 Core Events . 13

7 Client Filters . 14

8 Extension Modules . 16
8.1 Extension Coding Conventions . 16
8.2 Extension Classes Initialization . 16
8.3 Available Extension Modules . 17

8.3.1 color Extension Module . 17
8.3.2 font Extension Module . 17
8.3.3 keys Extension Module . 18
8.3.4 focus Extension Module . 19
8.3.5 border Extension Module . 20
8.3.6 outline Extension Module . 20
8.3.7 moveresize Extension Module 21
8.3.8 cycle Extension Module . 22
8.3.9 views Extension Module . 24
8.3.10 menu Extension Module . 25
8.3.11 panes Extension Module . 26
8.3.12 modewindow Extension Module 28
8.3.13 modestatus Extension Module 29
8.3.14 mw_clock Extension Module 30

ii

8.3.15 mw_biff Extension Module . 30
8.3.16 mw_apm Extension Module . 31
8.3.17 input Extensions Module . 31
8.3.18 inspect Extension Module . 33

9 Utilities . 34
9.1 wmm . 34
9.2 inspect plwm . 34

10 ToDo . 36

11 Credits . 37

12 Contact Info . 38

Introduction 1

Introduction

plwm, The Pointless Window Manager, is a collection of window manager primitives
written in Python.

If you are just interested in running plwm you should at least read the chapter
on the underlying philosophy, take a look at the chapter on running plwm and have
README.examplewm at hand.

If you are interested in really using plwm it is recommended, even required, to read the
rest of the manual.

Chapter 1: Philosophy and Excuses 2

1 Philosophy and Excuses

plwm is not a normal window manager, in fact, it isn’t a window manager at all. Instead
it is a collection of Python classes which you can use to build your own window manager.
You can include the existing features you like and easily write your own extensions to make
your plwm behave exactly as you want it to. Eventually, you will have a perfect symbiosis
of user and window manager, you and the computer will be a beautiful Mensch-Maschine!

One of the basic ideas is that the mouse should be banished, and everything should be
possible to do without moving your hands from the keyboard. This is the pointless bit of
plwm.

Another of the other basic ideas is to make a window manager which is is pure Unix
Philosophy: a bunch of simple tools which can be combined to build a powerful application.
The "tools" are Python classes which makes it easy to inherit, extend, mixin and override
functionality to get exactly the behaviour that you want.

This makes plwm extremely configurable by sacrificing ease of configuration: you actu-
ally have to write some Python code to get the window manager exactly as you want it.
However, if you was moved by the first paragraph, then you’re probably already a hacker
and will relish in writing your own window manager.

A typical plwm setup might look rudimentary, even hostile, to people used to the glitz
and glamour of more conventional window managers. However, there are a lot of powerful
features, making it really user-friendly. Provided that the user is friendly to plwm, of
course.

Chapter 2: Running PLWM 3

2 Running PLWM

plwm, at least in the examplewm.py guise, is not very sophisticated when it comes to
command line arguments. It only groks three:

-display Run plwm against another display than $DISPLAY.

-debug Enable debug messages. The argument should be a comma-separated list of
debug message categories, or empty, meaning enable all messages.

-version Print the PLWM version.

It can be tricky at first to figure out how to have a hacking-friendly X setup, so here is
a fragment of my ‘.xinitrc’ as an example of a plwm environment:

#!/bin/sh

Redirect error messages to a log file. This is where PLWM
tracebacks will go, so keep an eye on it.
exec 1>$HOME/.x11startlog 2>$HOME/.x11startlog

Read resource database from file .Xdefaults
xrdb ~/.Xdefaults

Set a solid color for the root window. The modewindow will have the
same background (set with .Xdefaults) and no border, so it will appear
to be a part of the root. Good enough.

xsetroot -solid darkolivegreen

Desperately try to start some window manager
As we start it in the background it can exit without shutting down
the entire X server.

(plwm || ctwm || twm) &

Instead the X server is kept running by wmm, or if that fails, by
xlogo. To shut down the X server we kill the wmm or xlogo window.

wmm || xlogo

How to configure wmm (see Section 9.1 [wmm], page 34) is not obvious at first either,
so here’s a ‘.wmmrc’ too (notice the tabs between the columns):

plwm plwm &
examplewm /home/petli/hack/plwm/examples/examplewm.py &
twm twm &

The idea is to use a stable plwm installed in your $PATH by default. When you are about
to test some freshly hacked feature or a bugfix, simply kill off the running plwm (C-M-Esc
in examplewm.py). This will pop up the wmm window, so click on the examplewm button in
it to start the development version, using modules from plwm directories next to examples.

Chapter 2: Running PLWM 4

To put the finishing touches to the configuration, we can change some fonts and colors
with the ‘~/.Xdefaults’ file:

Plwm.outline.font: -*-lucida-bold-r-*-sans-20-*-*-*-*-*-*-*
Plwm.border.color: black
Plwm.border.focus.color: grey60

Plwm.modewindow.background: darkolivegreen
Plwm.modewindow.foreground: white

Chapter 3: Configuration 5

3 Configuration

Most of the configuration of plwm is done by writing a python script using the various
window manager modules. See Chapter 8 [Extension Modules], page 16.

However, some small parts of plwm can be configured with X resources. The various X
resources are defined in the section of their corresponding modules.

They have one thing in common though, in that they all start with the name component
plwm and the class component Plwm. The name component used in lookups will actually be
the name of the window manager script, so if your script is called foowm.py, the resources
looked up will be e.g. foowm.border.color instead of plwm.border.color. The class
component used is controlled by the WindowManager attribute appclass, which by default
is Plwm.

Summary: in your ‘~/.Xdefaults’ or ‘~/.Xresources’, start all plwm resources with
Plwm., unless you know what you’re doing.

Chapter 4: Core Classes 6

4 Core Classes

If you absolutely must point to a single module and call it plwm, then you should direct
your attention to wmanager. It contains three classes which implements the fundamental
window managing and provides the extension framework.

WindowManager
This is the central window manager class. A WindowManager instance man-
ages the windows on a single display, which is provided as an argument to the
constructor. WindowManager also drives the event handling loop.

Screen
This class takes care of catching client windows so we can manage them. When
a WindowManager instance is created it will create a Screen instance for each
physical screen (monitor) connected to the display. Normally, an X server only
have one screen, but they can also be multiheaded, i.e. having more than one
screen. Each screen has its own root window, and all windows are therefore
local to a certain screen and cannot move between different screens.

Client
This class manages a single window. Instances are created when the Screen
instance managing the screen detects that a window has been created. All
window operations by extensions should be done using methods on the Client
instance managing that window.

This gives us the following structure: A single WindowManager instance manages a certain
display, by managing one or more Screen instances which in turn manages a number of
Client instances.

These classes have a number of publicly available attributes, listed in the sections below.
Of course, all member attributes are available for you, but if you try to stick to the listed
attributes and use the methods provided by the classes to manipulate windows your code
will stand a better chance of working with future extensions.

The core classes also generates some events which can be useful for mixins. See Chapter 6
[Core Events], page 13.

4.1 WindowManager Public Attributes

[Instance Variable of WindowManager]display
A Xlib.display.Display object connecting us to the X server.

[Instance Variable of WindowManager]events
An EventFetcher object for this display. See Chapter 5 [Event Handling], page 9.

[Instance Variable of WindowManager]dispatch
A global EventDispatcher. See Chapter 5 [Event Handling], page 9.

[Instance Variable of WindowManager]current client
[Instance Variable of WindowManager]focus client

The client currently containing the pointer and the client which has keyboard focus,
respectivly. Most of the time these are the same, but certain windows do not use

Chapter 4: Core Classes 7

input and will therefore never be focused. Most operations should be performed on
current client. The WindowManager provides the method set_current_client() to
change this in the proper way. However, to implement some kind of focus scheme you
have to use some extension class, see Section 8.3.4 [focus], page 20.

[Instance Variable of WindowManager]screens
A list of the managed screens.

[Instance Variable of WindowManager]screen nums
[Instance Variable of WindowManager]screen roots

Mappings from screen numbers or root windows to the corresponding screen object.

[Instance Variable of WindowManager]default screen
The default screen, defined when opening the display.

[Instance Variable of WindowManager]current screen
The screen currently containing the pointer. This will be maintained by the screens
automatically.

4.2 Screen Public Attributes

[Instance Variable of Screen]wm
The WindowManager which holds this screen.

[Instance Variable of Screen]number
The number of this screen.

[Instance Variable of Screen]root
The root window of this screen.

[Instance Variable of Screen]dispatch
The EventDispatcher for the root window. See Chapter 5 [Event Handling], page 9.

[Instance Variable of Screen]info
The screen information structure, as returned by the Xlib Display method screen().

4.3 Client Public Attributes

[Instance Variable of Client]screen
[Instance Variable of Client]wm

The Screen and WindowManager instances which contains this client.

[Instance Variable of Client]withdrawn
Set to true if this client has been withdrawn. A withdrawn client should not be
modified further, and has already been removed from the Screen’s list of clients.

[Instance Variable of Client]dispatch
The EventDispatcher for the client window. See Chapter 5 [Event Handling], page 9.

Chapter 4: Core Classes 8

[Instance Variable of Client]current
[Instance Variable of Client]focused

These attributes will be true or false to indicate whether this client is the current one,
and if it has focus.

Chapter 5: Event Handling 9

5 Event Handling

Event handling consists of getting events and then distributing them to the event
handlers. In plwm this is handled by the module event and its classes EventFetcher
and EventDispatcher. If the event loop in the WindowManager is the heart driving the
event blood stream, EventFetcher is the lungs providing fresh events (the oxygene) and
EventDispatcher is the arteries delivering the events to all the working parts of the window
manager body.

No, that analogue wasn’t strictly necessary.

5.1 Event Objects

The events are Python objects, either X event objects from Python Xlib, or an instance
of some other Python class. The only thing required by the event system is that they have
at least this attribute:

[Instance Variable of Event Objects]type
This identifies the event type, and can be any hashable object. For X events this
is some integer constants defined in Xlib.X. For other events this can be the event
object class, a unique string, or anything else that is useful. It must however be a
hashable object, since the type is used as an index into dictionaries.

The event module provides a function for getting new, unique integer event types:

[Function]new event type ()
Return a new unique integer event type, which does not conflict with the event types
of the Xlib.

Additionally the WindowManager uses one of these attributes to figure out which Screen
and Client that should take care of the event:

[Instance Variable of Event Objects]client
A client object this event is about or for. The Screen managing this client will get
the event, and can then in its turn pass the event on to the client itself.

[Instance Variable of Event Objects]window
The window object this event is about or for. The Screen managing the root window
of this window will get the event. If the window corresponds to a managed client,
that client can also get the event.

[Instance Variable of Event Objects]screen
The screen object this event is about or for, which will get the event.

If the event has none of the attributes or it is for an unmanaged screen it will only be
passed to the global event handlers.

Chapter 5: Event Handling 10

5.2 EventFetcher

The EventFetcher can provide events to the window manager from a number of sources:
the X server, timers, files or the window manager itself.

Synthetic events are generated by some code in the window manager, typically as an ab-
straction of some user input. As an example, the focus module generates ClientFocusOut
and ClientFocusIn events when the focus change, which it can do as an effect of an
X.EnterNotify event, or a call to focus.move_focus. Synthetic events have precedence
over all other event types.

[Method on EventFetcher]put event (event)
Insert a synthetic event object. Synthetic events are always returned before any timer
or X events, in FIFO order.

Timer events are used to do something at a later time. The keys module uses it to
implement a time-out on keyboard grabs, and the mw_clock module uses it to update a
clock display once a minute. Timer events are represented by TimerEvent objects, and have
precedence over file and X events. A timer event object is not reusable, so if something
should be done periodically, a new timer event will have to be rescheduled whenever the
previous one expires.

[Method on EventFetcher]add timer (timer)
Add the TimerEvent object timer to the list of timers. The expiration time of the
event is specified when creating the timer event. The event will be returned when the
timer expires unless it is cancelled before that.

[Class]TimerEvent (event type, after = 0, at = 0)
Create a a timer event that will expire either at a relative time, set with after, or at
a specific time, set with at. Times are measured in seconds as in the time module,
and can be integers or floating point values.
Timer events are identified by its type member, which are specified with the
event type argument.

[Method on TimerEvent]cancel ()
Cancel this timer event, if it hasn’t expired yet.

File events can be used to handle non-blocking I/O. They are generated when some
file is ready for reading or writing, and is typically used for network services, e.g. by the
inspect module. File events are represented by FileEvent objects, which remain on the
list of watched files until they are explicitly cancelled. File events have the lowest priority,
and are preceeded by X events.

[Method on EventFetcher]add file (file)
Add the FileEvent object file to the list of watched files. It will be returned whenever
its file is ready for the choosen I/O operation.

[Class]FileEvent (event type, file, mode = None)
Create a file event wathing file, which could be any object with a fileno() method.
The event is identified by event type.

Chapter 5: Event Handling 11

mode is the types of I/O that the caller is interested in, and should be a bitmask of
the flags FileEvent.READ, FileEvent.WRITE, or FileEvent.EXCEPTION. If mode is
None, the mode attribute of file, as specified to the open() call, will be used instead.

[Instance Variable of FileEvent]state
When a file event is returned by the event loop, this attribute will be set to a
mask of the I/O modes that the file is ready to perform, a subset of the modes
waited for.

If FileEvent.READ is set, at least one byte can be read from the file without
blocking. If FileEvent.WRITE is set, at least one byte can be written to the file
without blocking. If FileEvent.EXCEPTION is set, some exceptional I/O has
occured, e.g. out-of-band data on a TCP socket.

[Method on FileEvent]set mode (newmode = None, set = 0, clear = 0)
Change the I/O modes waited for. If newmode is not None, the mode will be
reset to newmode, otherwise the old mode will be modifed. Then the flags in
the bitmask set will be added, and the flags in clear will be removed, in that
order.

[Method on FileEvent]cancel ()
Cancel this file event, removing it from the list of watched files.

5.3 EventDispatcher

Each Screen and Client has an EventDispatcher connected to their root window
or client window, respectivly. Additionally, the WindowManager has an EventDispatcher
which is connected to all the root windows (through the dispatchers of each Screen).

An event is passed to the event handling functions which have been registered for that
particular event type. There are three levels of event handlers in a dispatcher:

System Handlers
System handlers will always be called, even if grab handlers are installed. They
will be called before the other types of handlers in this dispatcher. They are
primarily meant to be used by the core classes.

Grab Handlers
Grab handlers override previously installed grab handlers and all normal han-
dlers, but not system handlers.

Normal Handlers
Normal handlers are the most useful type of handlers for extension modules.
They will be called only if there are no grab handlers installed for this event
type.

First of all the handlers in the global dispatcher are called. Then, if the event can be
associated with a managed screen through its client, window, or screen attributes the
handlers in the dispatcher for that screen are called. Finally, if the event is for a managed
window the handlers in the dispatcher for that client are called.

Chapter 5: Event Handling 12

Grab handlers do not interfere with the dispatcher sequence directly, but a grab handler
do block grab handlers and normal handlers in later dispatchers. System handler are always
called, though.

An example: Assume that an event for a managed client has been fetched and is about
to be passed through the dispatchers. The matching event handlers are the following: in
the global dispatcher one system handler and two normal handlers, in the screen dispatcher
a grab handler and one normal handler, and in the client dispatcher one system handler,
one grab handler and one normal handler. The handlers will be called in this order: global
system, global normals, screen grab, client system. The screen normal, client grab and
normal handlers will be ignored because of the grab handler in the screen.

Handlers are registered with one of these methods:

[Method on EventDispatcher]add handler (type, handler, [masks = None], [
handler id = None])

[Method on EventDispatcher]add grab handler (type, handler, [masks = None
], [handler id = None])

[Method on EventDispatcher]add system handler (type, handler, [masks =
None], [handler id = None])

Add a handler for type events. handler is a function which will get one argument,
the event object.
If masks is omitted or None the default X event masks for the event type will be set
for the EventDispatcher’s window. Otherwise it should be an event mask or a list
or tuple of event masks to set.
handler id identifies this handler, and defaults to the handler itself if not provided.

[Method on EventDispatcher]remove handler (handler id)
Remove the handler or handlers identified by handler id. This will also clear the
masks the handlers had installed.

Event masks can also be handled manually when necessary. All event masks keep a
reference count, so calls to the following functions nest neatly.

[Method on EventDispatcher]set masks (masks)
Set masks on the window, without installing any handlers. masks should be an event
mask or a list or tuple of event masks to set.

[Method on EventDispatcher]unset masks (masks)
Clear masks on the window. masks should be an event mask or a list or tuple of
event masks to set.

[Method on EventDispatcher]block masks (masks)
Block masks on the window. This will prevent any matching X events to be generated
on the window until a matching unblock masks. masks should be an event mask or
a list or tuple of event masks to set.

[Method on EventDispatcher]unblock masks (masks)
Unblock masks on the window, allowing the matching X events to be generated.
masks should be an event mask or a list or tuple of event masks to set.

Chapter 6: Core Events 13

6 Core Events

The core classes can generate a number of internal events. Mostly, these are a result of
some X event or user activity. All of these events are defined in the module plwm.wmevents.

[Event]AddClient
Generated when a client is added. The added client is identified by the event object
attribute client.

[Event]RemoveClient
Generated when a client is removed (withdrawn). The removed client is identified by
the event object attribute client.

[Event]QuitWindowManager
Generated when the window manager event loop is exited by calling
WindowManager.quit.

[Event]CurrentClientChange
Generated when a new client is made current. The event object has two attributes:
client is the new client, or None if no client is current now. screen is the screen of
the previous current client, or None if no client was current previously.

[Event]ClientFocusOut
Generated when a client loses focus. The event object attribute client is the now
unfocused client.

[Event]ClientFocusIn
Generated when a client gets focus. The event object attribute client is the now
focused client.

Chapter 7: Client Filters 14

7 Client Filters

The module plwm.cfilter defines a number of client filters. These filters can be called
with a client as an argument, and returns true if the client matches the filter, or false
otherwise. Extension modules can then provide customization with client filters, allowing
the user to give certain clients special treatment.

Currently, the following filters are defined:

[Filter]true
[Filter]all

These filters are true for all clients.

[Filter]false
[Filter]none

These filters are false for all clients.

[Filter]is client
True if the object is a wmanager.Client instance.

[Filter]iconified
True if the client is iconified.

[Filter]mapped
True if the client is mapped, the opposite of iconified.

[Filter]name (string)
[Filter]re name (regexp)
[Filter]glob name (pattern)

These filters are true if the client resource name or class is exactly STRING, or
matches the regular expression regexp or the glob pattern pattern.

[Filter]title (string)
[Filter]re title (regexp)
[Filter]glob title (pattern)

These filters are similar to the name filters above, but matches the client title instead.

These basic filters can then be assembled into larger, more complex filters using the
following logical operations:

[Filter]And (filter1, filter2, ..., filterN)
True if all of the subfilters are true.

[Filter]Or (filter1, filter2, ..., filterN)
True if at least one of the subfilters is true.

[Filter]Not (filter)
True if filter is false.

Chapter 7: Client Filters 15

Here are some examples of compound filters:
Match any client that isn’t an Emacs

Not(name(’Emacs’))

Match an iconified xterm:

And(iconified, name(’XTerm’))

Match an xterm with a root shell (provided that the shell
prompt sets a useful xterm title)

And(name(’XTerm’), re_title(r’\[root.*\]’))

Chapter 8: Extension Modules 16

8 Extension Modules

To actually get a useful window manager one must extend the core classes (see Chapter 4
[Core Classes], page 6) with various extension classes. Extension classes take the form of
mixin classes, i.e. we just inherit it with the corresponding core class. They will add
methods to the core class, and can usually be configured with class attributes.

For example, to create a client which highlights the window border when it is focused
one could use this fragment:

class MyClient(wmanager.Client, border.BorderClient):
pass

Because of the mixin technique, we need some ground rules for naming schemes, config-
uration and initialization. Finally some extension modules are described in detail. For full
extension examples, look in the directory examples in the distribution tree.

8.1 Extension Coding Conventions

Extension classes will need their own member variables and methods, and to avoid classes
overwriting the attributes of other classes the following naming scheme should be used:
• Each extension module should select a prefix, typically the same as the module name

unless that it very unwieldy.
• All member variables and methods used and defined by an extension class should begin

with the prefix.
• An exception: methods are allowed to begin with get_ or set_ followed by the prefix.

8.2 Extension Classes Initialization

Extension classes must be able to initialize themselves. To make this easy the core classes
provide some special initializing functions for extension classes. Extension classes should
only use these, they must not use the normal Python initialization funktion __init__.

When extending a core class by subclassing it together with a number of extension
classes, the core class should be the first base class. The extension classes may have to be
ordered among themselves too.

When an extended core class is initialized it will traverse the class inheritance tree. When
an extension initialization function is found it is called without any arguments except for
the object itself. As soon as an extension initialization function is found in a base class, its
base classes will not be traversed.

WindowManager provides two extension initialization functions:

__wm_screen_init__
Called after the display is opened, but before any screens are added.

__wm_init__
Called after all the screens have been added, i.e. as the very last thing during
the initialization of the window manager.

Chapter 8: Extension Modules 17

Screen also provides two extension initialization functions:

__screen_client_init__
Called after the root window has been fetched and the EventDispatcher has
been created, but before any clients are added.

__screen_init__
Called after all the clients have been added, i.e. before the window manager
adds the next screen.

Client provides only one extension initialization function:

__client_init__
Called after the client has finished all of its core initialization, i.e. just before
the screen will add the next client.

There are also corresponding finalization methods:

__wm_del__
__screen_del__
__client_del__

These are called just before the object will finish itself off, similar to the __del_
_ method of objects. (Actually, these methods are called from the __del__
method of the object.)

8.3 Available Extension Modules

This is a description of the available extension modules, with information on how to use
them and on the interface they provide to other extension modules.

8.3.1 color Extension Module

color provides a screen mixin for color handling:

[Screen Mixin]Color
Color handles color allocation. It maintains a cache of allocated colors to reduce
plwm’s colormap footprint on displays with a low bit depth.

[Method on Color]get color (color, default = None)
Returns the pixel value corresponding to color. color can be a string or tuple of
(R, G, B) integers. If the color can’t be allocated and default is provided, get_
color tries to return that color instead. If that fails too, it raises a ColorError
exception.

[Method on Color]get color res (res name, res class, default = None)
Return the pixel value for the color defined in the X resource identified by res_
name res_class. WindowManager.rdb_get is used to lookup the resource, so
the first components of the name and class should be omitted and they should
start with ‘.’.
If default is provided, that name will be used if no matching X resource is
found. If omitted, or if the color can’t be allocated, ColorError is raised.

Chapter 8: Extension Modules 18

8.3.2 font Extension Module

font provides a window manager mixin for loading fonts:

[WindowManager Mixin]Font
Font provides two functions for loading fonts:

[Method on Font]get font (fontname, default = None)
Returns the font object corresponding to fontname. If fontname doesn’t match
any font, attemt to return the font named default instead, if default is pro-
vided. If no font can be found, FontError is raised.

[Method on Font]get font res (res name, res class, default = None)
Return the font object corresponding to the X resource identified by res_name
res_class. WindowManager.rdb_get is used to lookup the resource, so the
first components of the name and class should be omitted and they should
start with ‘.’.
If this resource isn’t found or doesn’t match any font, attempt to return the
font named default instead, if default is provided.
If no font can be found, FontError is raised

8.3.3 keys Extension Module

keys provides two classes for handling key events: KeyHandler and its subclass
KeyGrabKeyboard.

[Class]KeyHandler (obj)
Represents a key handler, and should only be used as a base class, never instantiated
directly. Instantiate a class derived from KeyHandler to install its key handler. When
instantiating, obj should be a WindowManager, Screen, or Client object.
If obj is a WindowManager object the key bindings defined will be active on all screens.
If obj is a Screen object the key bindings will only be active when that screen is the
current one. If obj is a Client object the key bindings will only be active when that
client is focused.

[Instance Variable of KeyHandler]propagate keys
This attribute controls whether this key handler will allow other key handlers
to recieve events. If it is true, which is the default, key events will be passed to
all currently installed key handlers. If it is false key events will only reach this
key handler and other installed handlers will never see them.

[Instance Variable of KeyHandler]timeout
If this is set to a number, the key handler method _timeout will be called if no
key has been pressed for timeout number of seconds. This is None by defalt,
meaning that there are no timeout for this keyhandler.

[Method on KeyHandler]timeout (event)
Called when the timeout is reached, if any. event is the TimerEvent causing
the timeout. Key handlers using a timeout should override this method.

Chapter 8: Extension Modules 19

[Method on KeyHandler]cleanup ()
Uninstall the key handler. This will remove all grabs held by the keyhandler,
and remove its event handlers from the event dispatcher. Typically this is called
from an overridden _timeout.

[Class]KeyGrabKeyboard (obj, time)
This KeyHandler subclass should be used when the application whishes to grab all
key events, not only those corresponding to methods.
The obj argument is the same as for KeyHandler. time is the X time of the event
which caused this key handler to be installed, typically the time attribute of the event
object. It can also be the constant X.CurrentTime.
This class also changes the defaults for propagate_keys to false and timeout to 10
seconds, and provides a _timeout method which uninstalles the key handler.

A key handler is created by subclassing KeyHandler or KeyGrabKeyboard. All methods
defined in the new key handler class represents represents key bindings. When a key event
occures that match one of the methods, that method will be called with the event object
as the only argument.

The name of the method encodes the key event the method is bound to. The syntax
looks like this:

name :== keysym | modifiers ’_’ keysym

keysym :== <any keysym in Xlib.XK, without the XK_ prefix>

modifiers :== modifiers ’_’ modifier | modifier

modifier :== ’S’ | ’C’ | ’M’ | ’M1’ | ’M2’ | ’M3’ | ’M4’ | ’M5’ |
’Any’ | ’None’ | ’R’

In other words, the method name should be a list of modifiers followed by the name of a
keysym, all separated by underscores. The keysyms are found in the Python Xlib module
Xlib.XK.

The modifiers have the following intepretation:
S Shift
C Control
M Meta or Alt (interpreted as Mod1)
M1 Mod1
... ...
M5 Mod5

Any Any modifier state, should not be combined with other modifiers

None No modifiers, useful for binding to the key 9, or other keysyms which are not
valid method names by themselves

R Bind to the key release event instead of the key press event

Chapter 8: Extension Modules 20

8.3.4 focus Extension Module

focus provides classes to track and control window focus changes. The core classes will
generate events when focus changes. The order of the generated events is ClientFocusOut,
CurrentClientChange, and ClientFocusIn. See Chapter 6 [Core Events], page 13.

[WindowManager Mixin]PointToFocus
This window manager mixin sets the current client to the one which currently contains
the pointer. Most of the time, the current client also has focus. However if the current
client don’t use input, the previously focused client remains that.

[WindowManager Mixin]SloppyFocus
This is a subclass of FocusHandler which implements sloppy focus instead of point-
to-focus. Sloppy focus means that a client will not loose focus when the pointer moves
out to the root window, only when it moves to another client.

[WindowManager Mixin]MoveFocus
This mixin defines a method for moving focus between clients:

[Method on FocusHandler]move focus (dir)
Move the focus to the next window in direction dir, which should be one
of the constants focus.MOVE_UP, focus.MOVE_DOWN, focus.MOVE_LEFT or
focus.MOVE_RIGHT.

Alas, this function is not very intelligent when choosing the next window, and
it only works well when all windows are on a horizontal or vertical axis and
focus is moved along that axis.

8.3.5 border Extension Module

This module provides a client mixin to change window border color depending on focus
state. This module requires the color and focus modules to work properly.

[Client Mixin]BorderClient
Set a border on windows, and change its color depending on focus state. The col-
ors used are set with the X resources plwm.border.color/Plwm.Border.Color and
plwm.border.focus.color/Plwm.Border.Focus.Color. The defaults for these are
"black" and "grey60", respectively.

[Instance Variable of BorderClient]border default width
The border width in pixels. Default is 3.

[Instance Variable of BorderClient]no border clients
A client filter, used to select clients which should have no border. The default
is cfilter.false, so all clients will have borders.

Chapter 8: Extension Modules 21

8.3.6 outline Extension Module

This module provides different ways of drawing an outline of windows. All outline classes
are client mixins and have the same interface:

[Method on OutlineClient]outline show (x = None, y = None, w = None,
h = None, name = None)

Show an outline for this client’s window. If an outline already is visible, it will be
changed to reflect the arguments.
The arguments x, y, w and h gives the geometry of the outline. If any of these are not
provided, the corresponding value from the current window geometry will be used.
If name is provided, that string will be displayed in the middle of the outline.

[Method on OutlineClient]outline hide ()
Hide the outline, if it is visible.

Currently there are two outline classes:

[Client Mixin]XorOutlineClient
Draws the outline directly on the display, by xor-ing pixel values. The font used is set
with the X resource plwm.outline.font/Plwm.Outline.Font. The default is fixed.
This is the most efficient outline method, but it has a few problems. If the windows
under the outline changes, remains of the outline will still visible when it is hidden.
The windows can be restored by e.g. iconifying and deiconifiying, switching to another
view and back, or in an Emacs pressing C-l.
A bigger problem is that some combinations of depth, visual and colormap of the root
window causes the xor of black to be black. This results in an invisible outline if you
have a black background. This can be solved by changing the background colour of
the root, or using some other outline method.

[Client Mixin]WindowOutlineClient
This “draws” the outline by creating a set of thin windows, simulating drawing lines
on the screen. Any name is displayed by drawing it in a centered window, using the
font specified as above.
This is less efficient than an xor outline, since eight or nine windows have to be moved
and resized if the outline is changed. However, it does not have any of the problems
listed for XorOutlineClient.
The colours used is currently hardcoded to black and white.

8.3.7 moveresize Extension Module

This module provides functionality for moving and resizing windows. The core function-
ality is implemented by the abstract base class MoveResize. It is subclassed by the two
classes MoveResizeOpaque and MoveResizeOutline which resizes windows by changing the
window size, and by drawing an outline of the new size, respectivelly. The latter requires
the outline module. See the code for details on these classes.

Chapter 8: Extension Modules 22

Most resizing will be done via key handlers, so a template key handler class is provides
that simplifies writing your own moving and resizing keyhandler for the currently focused
client:

[Class]MoveResizeKeys (from keyhandler, event)
MoveResizeKeys contains methods for the various move and resize operations. Is
should be subclassed, and in the subclass key binding method names should be as-
signed to the general methods.

There are 24 general methods:

move X Move the client in direction X
enlarge X Enlarge the client in direction X
shrink X Shrink the client from direction X

The direction is one of eight combinations of the four cardinal points: e, ne, n, nw,
w, sw, s and se.

Additionally theres two methods for finishing the moveresize:

moveresize endFinish, actually moving and resizing the client
moveresize abortAbort, leaving client with its old geometry

By default outline moveresizing is used with the MoveResizeOutline class. This
can be changed by redefining the attribute _moveresize_class to any subclass of
MoveResize.

A small MoveResizeKeys subclass example:

class MyMRKeys(MoveResizeKeys):
_moveresize_class = MoveResizeOpaque

KP_Left = MoveResizeKeys._move_w
KP_Right = MoveResizeKeys._move_e
KP_Up = MoveResizeKeys._move_n
KP_Down = MoveResizeKeys._move_s

KP_Begin = MoveResizeKeys._moveresize_end
Escape = MoveResizeKeys._moveresize_abort

This would be invoked like this in a keyhandler event method in your basic keyhandler:

def KP_Begin(self, evt):
MyMRKeys(self, evt)

MoveResize generates events during operation. The type attribute for all these are the
event class, and the client attribute is the affected client.

MoveResizeStart is generated when the moveresize is started, MoveResizeEnd when it
ends and the window geometry is changed, and MoveResizeEnd when it is aborted and the
window geometry is left unchanged.

MoveResizeDo is generated for each change in window geometry during moveresize. It
has four attributes denoting the current geometry: x, y, width and height.

Chapter 8: Extension Modules 23

8.3.8 cycle Extension Module

cycle provides classes for cycling among windows to select one of them to be activated.
This is performed by an abstract base class:

[Class]Cycle (screen, client filter)
Cycle among the windows on screen matching client filter.

[Method on Cycle]next ()
Cycle to the next window.

[Method on Cycle]previous ()
Cycle to the previous window.

[Method on Cycle]end ()
Finish and activating the selected window.

[Method on Cycle]abort ()
Abort, not activating the selected window.

This is implemented by two subclasses: CycleActive which cycles among windows by
activating them in turn, and CycleOutline which cycle among windows by drawing an
outline of the currently selected window. The latter requires the outline extension.

To simplify writing a key handler for cycling, a template key handler is provided:

[Class]CycleKeys (keyhandler, event)
Cycle among the windows on the current screen matching the client filter specified
by the attribute _cycle_filter. This is cfilter.true by default, cycling among
all windows. The cycle method is specified by the attribute _cycle_class, which by
default is CycleOutline.
CycleKeys defines a number of event handler methods:
cycle next Cycle to the next client
cycle previous Cycle to the previous client
cycle end Finish, selecting the current client
cycle abort Abort, reverting to the previous state (if possible)

A small CycleKeys subclass example:
class MyCycleKeys(CycleKeys):

_cycle_class = CycleActivate
_cycle_filter = cfilter.Not(cfilter.iconified)

Tab = CycleKeys._cycle_next
C_Tab = CycleKeys._cycle_next
S_Tab = CycleKeys._cycle_previous
S_C_Tab = CycleKeys._cycle_previous

Return = CycleKeys._cycle_end
Escape = CycleKeys._cycle_abort

To activate your cycle keys, write a keyhandler event method like this in your basic
keyhandler:

Chapter 8: Extension Modules 24

def C_Tab(self, evt):
MyCycleKeys(self, evt)

8.3.9 views Extension Module

Views are plwm’s "workspaces". Many window manager have the concept of workspaces,
or virtual screens. They give the illusion of having several screens, although only one of
them can be displayed at a given time on the physical screen. This is done by iconifying
the windows not visible on a workspace when that workspace is displayed.

Views does this too, and more. A view can be seen as a projection of the avialable
windows onto the screen in a certain configuration. Views not only remembers which
windows are visible on them, but also their geometry and stacking order. This means that
the same window can appear on several views in a different place, even with a different
size, on each view. Views also remembers the pointer position when swapping to another
view, and restores it when the view is activated again. All information about the view
configuration is stored when plwm exits, so it can be restored after a restart.

Additionally, you can create views dynamically when you need them, and when they are
no longer needed they will be destroyed. A view is considered to be unneeded if it is empty
when you switch to another view.

All this is handled by the screen mixin ViewHandler:

[Screen Mixin]ViewHandler

[Instance Variable of ViewHandler]view always visible clients
A client filter matching the client windows that should be visible on all views,
irrespective of view configuration. When determining if a view is empty so it can
be deleted, these windows will be ignored. The default value is cfilter.false.

[Method on ViewHandler]view new (copyconf = 0)
Create a new view and switch to it. If copyconf is true, the window configura-
tion of the current view will be copied, otherwise the new view will be empty.

[Method on ViewHandler]view next ()
Switch to the next view.

[Method on ViewHandler]view prev ()
Switch to the previous view.

[Method on ViewHandler]view goto (index, noexc = 0)
Switch to view number index, counting from 0. If noexc is false IndexError
will be raised if index is out or range. If noexc is true, quitely return.

[Method on ViewHandler]view find with client (clients)
Switch to the next view where there is a visible client matching the client filter
clients. Beeps if there none.

[Method on ViewHandler]view tag (tag)
Set a tag on the current view. tag can be any string.

Chapter 8: Extension Modules 25

[Method on ViewHandler]view find tag (tag)
Switch to the next view with tag tag. Beeps if there is none.

If there is a modewindow, one can use the mixin XMW_ViewHandler instead of
ViewHandler to get information on the current view number and tags in the modewindow.

8.3.10 menu Extension Module

The menu module provides a screen mixin to display a menu of options for the user to
select from, as well as a pair of keyboard handler templates for the menu. There is only one
menu for each screen, but the available options may be changed each time it is displayed.
To the user, there appear to be many menus, but only one may be displayed at a time.

[Screen Mixin]screenMenu
Provides the menu window for each screen. The look of the window is controlled by
the following class variables:
Variable Default Description
menu fontname 9x15bold Font for menu options.
menu foreground black Foreground color for the menu window.
menu background white Background color for the menu window.
menu borderwidth 3 Border for the men window.
menu handler MenuKeyHandlerKeyboard handler for menus.

[Method on screenMenu]menu make (labels, align = ’center’)
Creates a menu window from labels, which must be a sequence of strings. The
strings will be aligned in the window according to the value of align, which
may be ’left’, ’right’ or ’center’. The width and height of the resulting
window are returned as a tuple for use in calculating the menu placement.

[Method on screenMenu]menu run (x, y, action)
x and y are the coordinates the menu should be placed at. action is a callable
argument that will be invoked with the string used for the label the user selected.
If the user aborts the menu, action will not be invoked.

A simple example of a menu with dictionary of functions might be:
class MyFunctionMenu:

def __init__(self, screen, dict):
self.dict = dict
labels = dict.keys()

labels.sort()
width, height = screen.menu_make(labels)
Center the menu
screen.menu_run((screen.root_width - width) / 2,

(screen.root_height - height) / 2,
self)

def __call__(self, choice):
self.dict[choice]()

Chapter 8: Extension Modules 26

Making selections and aborting the menu are done via key handlers See Section 8.3.3
[keys], page 18, and two template key handlers are provided for menu selections:

[Class]MenuKeyHandler
MenuKeyHandler provides the methods _up, _down, _do and _abort. These move the
current selection, pass the current selection to the action object passed to menu_run,
and abort the menu taking no action. A binding with Emacs keys might look like:

class MyMenuKeys(MenuKeyHandler):
C_p = MenuKeyHandler._up
C_n = MenuKeyHandler._down
Return = MenuKeyHandler._do
C_g = MenuKeyHandler._abort

[Class]MenuCharHandler
MenuCharHandler adds the _goto method, which moves the current selection to the
first label that starts with the a character greater than or equal to the typed key. It
then binds the keys a to z and 0 to 9 to goto. This lets the user select labels by
their first character if MenuCharHandler is used instead of MenuKeyHandler.

To have menus on your screen use your menu keys, you would add the screenMenu mixin
and set the menu_handler class variable:

class MyScreen(Screen, screenMenu):
menu_handler = MyMenuKeys

8.3.11 panes Extension Module

The panes mixins provide an alternative method of managing windows. Rather than
wrapping each window in a frame which is manipulated to manipulate the window, windows
are placed in "panes", and the only thing the user can do to windows in a pane is circulate
through them. When a window is placed in a pane, it will be resized to the largest size
that it can handle which will fit in that pane. However, panes can be split into two parts
at whatever fraction of the full pane the user chooses, so that panes can be created with
nearly arbitrary geometry. Panes do not overlap, and every pixel on the screen is in a pane.

See ‘examples/plpwm.py’ for an example of using panes to build a window manager.

[Class]Pane

[Method on Pane]add window (client)
Adds the clients window to the current pane. It will become the top window in
the pane. If the current top window in the pane has focus, the new top window
will get focus.

[Method on Pane]iconify window ()
Iconifies the panes active window.

[Method on Pane]force window ()
Resize the window again. This actually resizes the window down then back up,
and is useful if the application doesn’t realize how big the window really is. This
is most often seen in programs started in an xterm by the xterm command.

Chapter 8: Extension Modules 27

[Method on Pane]next window ()
Make the next window associated with this pane the top window.

[Method on Pane]prev window ()
Make the previous window associated with this pane the top window. When a
window is added to a pane, the window that was the top window becomes the
previous window.

[Method on Pane]horizontal split (fraction = .5)
Split the current pane into two halves horizontally. The new pane will get
fraction of the current panes height at the bottom of the current pane, and will
become the active pane.

[Method on Pane]vertical split (fraction = .5)
Split the current pane into two halves vertically. The new pane will get fraction
of the current panes width at the right of the current pane, and will become
the active pane.

[Method on Pane]maximize ()
Make the current pane occupy the entire screen, removing all other panes.

[Filter]panelfilter (pane)
True if the client is in the given pane.

[WindowManager Mixin]panesManager
The panesManager mixin adds panes and pane manipulation to the window manager.

[Instance Variable of panesManager]panes list
The list of panes managed by this windowmanager.

[Instance Variable of panesManager]panes current
The index of the pane containing the currently active window, also known as
the active pane.

[Instance Variable of panesManager]panes window gravity
The gravity to be used for normal windows in this pane.

[Instance Variable of panesManager]panes maxsize gravity
The gravity to be used for windows with maxsize hints in this pane.

[Instance Variable of panesManager]panes transient gravity
The gravity to be used for transient windows in this pane.

[Method on panesManager]panes goto (index)
Make the pane at index in panes_list the active pane.

[Method on panesManager]panes activate (pane)
Make pane the active pane.

[Method on panesManager]panes next ()
Make the next pane in the list the active pane. If the last pane is the active
pane, make pane 0 the active pane.

Chapter 8: Extension Modules 28

[Method on panesManager]panes prev ()
Make the previous pane in the list the active pane. If pane 0 was active, make
the last pane in the list active.

[Method on panesManager]panes number (number)
Rearrange panes_list so that the active pane is pane number. This is done
by exchanging the list positions of pane number and pane panes_current.

[Method on panesManager]panes save ()
Save the state of all clients by building a dictionary of which pane they are
associated with.

[Method on panesManager]panes restore ()
Put all clients back in the pane they were in when panes save was last invoked,
if possible. If the pane doesn’t exist or is on a different screen from the window,
the restore isn’t possible.

[Screen Mixin]panesScreen
This mixin causes the first pane to be created on each screen being managed. It has
no variables or methods useful to the user, but you must mix it into your screen class
if you want to use panes.

[Client Mixin]panesClient
This mixin passes client events to the pane that the client’s window is associated
with. It has no variables or methods useful to the user, but you must mix it into your
client class if you want to use panes.

8.3.12 modewindow Extension Module

The modewindow module provides a screen mixin to display a window containing general
window manager information, and a class representing this information. The name of the
module derives from the mode-line in Emacs, which has a similar function.

[Screen Mixin]ModeWindowScreen
Displays a mode window on the screen. The look of the window is controlled with
the following X resources:

plwm.modewindow.foreground/Plwm.ModeWindow.Foreground
plwm.modewindow.background/Plwm.ModeWindow.Background

These set the colors to be used by the modewindow. Defaults are black
foreground and white background.

plwm.modewindow.font/Plwm.ModeWindow.Font
The font to use in the modewindow. Default is fixed.

[Instance Variable of ModeWindowScreen]modewindow pos
Controls the position of the mode window. Can either be modewindow.TOP or
modewindow.BOTTOM.

[Method on ModeWindowScreen]modewindow add message (message)
Add message, which must be a Message object, to this mode window. A single
message object can be added to several mode windows.

Chapter 8: Extension Modules 29

[Method on ModeWindowScreen]modewindow remove message (
message)

Remove message from this modewindow.

[Class]Message (position, justification = modewindow.CENTER, nice = 0,
text = None)

Represents a single message to be displayed in one or more mode windows.
position is the horizontal position for this message in the modewindow, and should be
a float in the range [0.0, 1.0]. The message text is drawn at this point according to jus-
tification, which should be one of the values modewindow.LEFT, modewindow.CENTER
or modewindow.RIGHT. nice is currently not used, but is meant to be used to avoid
message overlaps by shuffling less important messages around. Finally, text is the
initial text of this message, where None means an empty message.

[Method on Message]set text (text)
Change the text of this message to text. All affected mode windows will be
redrawn, if necessary.

8.3.13 modestatus Extension Module

modestatus is a layer on top of modewindow, providing a way to display the current
status of the window manager, e.g. the focused window, the geometry of a window during
resize, and more.

[Screen Mixin]ModeStatus
Add a status message to the center of this screen’s mode window. The status mes-
sage is really a stack of different messages, where the top-most message is currently
displayed.

[Method on ModeStatus]modestatus set default (text)
Set the default text to be displayed when there is no special status to text.

[Method on ModeStatus]modestatus new (text = ”)
Push a new message on to the status message stack. A ModeText object will
be returned, which will have text as the initial message.

[Class]ModeText
This class should never be instantiated directly, only through ModeStatus.modestatus_
new.

[Method on ModeText]set (text)
Set the text of this status message to text. If this is the top-most message, the
new text will be displayed.

[Method on ModeText]pop ()
Remove this message from the message stack. If this was the top-most message,
the previous message will be displayed instead.

This module also provides some mixins that use the mode status functionality:

Chapter 8: Extension Modules 30

[Client Mixin]ModeFocusedTitle
Display the currently focused client’s title as the default message.

[Screen Mixin]ModeMoveResize
When moving and resizing, display the title of the displayed window and the current
geometry. The format of the message is controlled by an X resource with name
plwm.moveResize.modeFormat and class Plwm.MoveResize.ModeFormat. It should
be a Python format string, where %(title)s will be replaced with the client title,
and %(geometry)s with the current geometry. The default format is %(title)s
[%(geometry)s].

8.3.14 mw_clock Extension Module

[WindowManager Mixin]ModeWindowClock
This mixin displays the current time in all mode windows. It is updated once
a minute. The format is a time.strftime format, by default %H:%M. It can be
changed with an X resource with name plwm.modewindow.clock.format and class
Plwm.ModeWindow.Clock.Format.

[Instance Variable of ModeWindowClock]mw clock position
The position of the time message in the mode window, default 1.0.

[Instance Variable of ModeWindowClock]mw clock justification
The justification of the time message, default is modewindow.RIGHT.

8.3.15 mw_biff Extension Module

This module provides two different mail notifications mixins, which both use the mode
windows and beeping for notification. They assume that new mail is stored in $MAIL, and
removed from it when read. This works well with the behaviour of Gnus with the nnmail
backend.

When $MAIL is empty or non-existent, no message is displayed. When new mail arrives
the message ‘New mail’ is displayed, and the speaker beeps. If $MAIL is accessed without
being emptied, the message is changed to ‘Mail’. When $MAIL is emptied, the message is
removed again.

The messages can be changed with X resources. The X resource with name
plwm.modewindow.newMail.text and class Plwm.ModeWindow.NewMail.Text controls the
new mail message, and the resource with name plwm.modewindow.Mail.text and class
Plwm.ModeWindow.Mail.Text controls the mail exists message.

Changing the mail exists message to ‘’ could be useful if one uses a mail client that leaves
read mail in $MAIL.

[WindowManager Mixin]ModeWindowBiff
Displays a mail notification message in all mode windows.

[Instance Variable of ModeWindowBiff]mw biff position
The position of the mail message in the mode window, default 0.0.

Chapter 8: Extension Modules 31

[Instance Variable of ModeWindowBiff]mw biff justification
The justification of the mail message, default is modewindow.LEFT.

If the mailspool is mounted over NFS, it might be unadvisable to access it from the
window manager. If the NFS server should freeze, the entire window manager would be
unusable until the server recovers. Therefore a threaded biff mixin is provided:

[WindowManager Mixin]ThreadedModeWindowBiff
This subclasses ModeWindowBiff, with the change that access to $MAIL is done in a
separate thread. As plwm certainly isn’t thread-safe, all interaction with the rest of
the window manager modules is done in the main thread. Communication between
the mailspool access thread and the main thread is done without locks or semaphores.
The main thread polls at regular intervals whether the access thread has finished yet,
and if so, updates the mode window. This uses the property of Python threading
that only one thread at a time may access Python objects. If this would ever change,
this class might break.

8.3.16 mw_apm Extension Module

[WindowManager Mixin]ModeWindowAPM
This mixin displays the battery status in all mode windows. There is a generic
interface for fetching the status, making it easy to port this module to different apm
systems. Currently, the only supported system is the special file ‘/proc/apm’ of Linux
systems.

[Instance Variable of ModeWindowClock]mw apm position
The position of the battery status in the mode window, default 0.2.

[Instance Variable of ModeWindowClock]mw apm justification
The justification of the battery status, default is modewindow.RIGHT.

8.3.17 input Extensions Module

Input provides tools to let the window manager read a line of input from the user and
act on it. It provides a subclass of KeyGrabKeyboard (see Section 8.3.3 [keys], page 18) for
configuration, and two classes to read input.

[Class]InputKeyHandler (handler, displayer)
Creates a key handler class for editing input. The handler is any object acceptable to
KeyGrabKeyboard. displyer.show(left, right) is called to display the two strings
with a curser between them. displayer.do(text) is called when the user is through
editing the input. displayer.abort() is called if the user aborts the operation.
InputKeyHandler provides the following methods that may be bound to keystrokes
like any other keyhander. See Section 8.3.3 [keys], page 18.

[Method on InputKeyHandler]insert (event)
The key pressed to generate event is inserted into the buffer at the cursor. All
the characters of the latin1 character set are bound to this by default.

Chapter 8: Extension Modules 32

[Method on InputKeyHandler]forw (event)
Move the cursor forward one character in the edited text.

[Method on InputKeyHandler]back (event)
Move the cursor backward one character in the edited text.

[Method on InputKeyHandler]delforw (event)
Delete the character in front of the cursor in the edited text.

[Method on InputKeyHandler]back (event)
Delete the character behind of the cursor in the edited text.

[Method on InputKeyHandler]end (event)
Move the cursor to the end of the edited text.

[Method on InputKeyHandler]begin (event)
Move the cursor to the beginning of the edited text.

[Method on InputKeyHandler]back (event)
Delete all the characters from the cursor to the end of the edited text.

[Method on InputKeyHandler]paste (event)
If text is selected, it will be inserted into the edited text at the cursor, as
if typed by the user. For this to work, the handler must be an instance of
wmanager.Window. If that is not the case, or no text is currently selected, this
does nothing.

[Method on InputKeyHandler]done (event)
Finishes the action, and calls displayer.do passing it the edited text.

[Method on InputKeyHander]abort (event)
Aborts the input operation, callgin displayer.abort().

[Class]inputWindow (prompt, screen, length = 30)
inputWindow is a class that creates a window on screen and uses an InputKeyHandler
to read input from the user. The user is prompted with prompt. Space is left for
length extra characterfs to display in the window, but it will scroll to keep the cursor
always in view.

[Instance Variable of inputWindow]fontname
[Instance Variable of inputWindow]foreground
[Instance Variable of inputWindow]background
[Instance Variable of inputWindow]borderwidth

The attributes of the window used to read the input. The defaults are 9x15 for
the fontname, a black foreground on a white background, and a borderwidth
of 3.

[Instance Variable of inputWindow]height
[Instance Variable of inputWindow]width

The height and width of the window will be available as attributes after the
inputWindow is instantiated.

Chapter 8: Extension Modules 33

[Method on inputWindow]read (action, handlertype, x = 0, y = 0)
The read method of the inputWindow is called to read text from user and act
on it. handlertype should be a subclass of InputKeyHandler with appropriate
bindings for editing the text. action will be invoked with the edited text as it’s
sole argument when handlertypes’s _done action is invoked.

[Class]modeInput (prompt, screen)
An modeInput object uses the modewindow on screen to read input from the user. See
Section 8.3.12 [modewindow], page 28. It has an read method that takes the same
arguments as the read method of inputWindow, except that x and y are ignored.

8.3.18 inspect Extension Module

Inspect allows a special client to remotly connect to the running window manager. The
client can then execute Python statements in the context of the window manager. This can
be used to inspect the internal state of the window manager, change it, or whatever you
might come up with.

The server side is implemented by a window manager mixin. For documentation on the
client program, see Section 9.2 [inspect plwm], page 34.

[Window Manager Mixin]InspectServer
The inspect server can be enabled or disabled. When it is enabled, the message
[Inspect] is showed in the modewindow. When inspect clients connect it will change
to also show the number of connected clients.

[Instance Variable of inspect enabled at start]
Whether the inspect server should be enabled at startup. Default value is false.

[Method on InspectServer]inspect enable ()
Enable the inspect server.

[Method on InspectServer]inspect disable (force = 0)
Disable the inspect server. If force is false disabling will fail if clients are
connected, which will be indicated by a beep. If force is true the clients will be
disconnected and the inspect server disabled.

[Method on InspectServer]inspect toggle (force = 0)
Toggle the inspect server on or off. force is only used for disabling, and has the
same meaning as for inspect_disable.

The inspect server is as secure as your X display. The inspect server announces the tcp
port it listens on in a property on the root window. In the same property it also stores a
random, 31-bit cookie. To be able to connect to the inspect server the client must fetch this
property to find the port to connect to, and the cookie to send as authorization. Therefore
only those with access to your X display, thanks to xhost or xauth, can connect to the
inspect server.

Chapter 9: Utilities 34

9 Utilities

The following small X programs can be seen as a first step towards making plwm a full
pointless desktop to rival gnome and kde. Well, maybe not.

9.1 wmm

wmm, the Window Manager Manager, is a utility to simplify testing your freshly hacked
window manager. It opens a small window containing one or more buttons. When a button
is clicked, a command is executed.

The window manager managing feature is that if wmm is iconified by the running window
manager it will be mapped when the window manager exits or crashes. When wmm detects
that it has been mapped it will raise itself to the top of all the other windows. This ensures
that it will be possible to click on one of its buttons to start another window manager, and
thus be able to fix the bug which lurked in your window manager.

wmm is configured with ~/.wmmrc. For each non-blank line, not starting with a #, wmm
will create a button. Each line should consist of two tab-separated fields, the first is the
button label and the second is the command to run when the button is clicked (it should
probably end with an & so WMM isn’t locked). If the second field is missing, wmm will
instead quit when the button is clicked.

9.2 inspect plwm

This utility is used to connect to the inspect server of a running window manager. The
client must be able to connect to the display that the window manager is running on to be
able to connect to the inspect server. The display is fetched from the $DISPLAY variable or
the command line option -display.

When successfully connected, a welcome message is displayed by the window manager
and a common Python prompt is shown. Python expressions and statements can now be
entered. They will be evaluated in the window manager, and the results or tracebacks will
be printed.

The code will be evalated in an environment containing all builtin functions and the
variable wm, which points to the WindowManager object representing the window manager.

An example session (long lines have been wrapped):
[petli@sid petli]$ inspect_plwm
Welcome to PLWM at :0
>>> wm
<__main__.PLWM instance at 82148a8>
>>> wm.default_screen.clients.values()
[<__main__.MyClient instance at 822ec28>,
<__main__.MyClient instance at 8215ce8>,
<__main__.MyClient instance at 8217370>,
<__main__.MyClient instance at 822bfc0>]
>>> import sys

Chapter 9: Utilities 35

>>> map(lambda c: sys.stdout.write(c.get_title() + ’\n’),
wm.default_screen.clients.values())

xterm
xterm
WMManager
emacs@sid.cendio.se
[None, None, None, None]
>>>

Note that modules can be imported, and that sys.stdout and sys.stderr will output in
the terminal window inspect plwm is running in, even though the expressions are evaluated
inside the window manager.

Multi-line statements can also be written with a small kludge: The lines must start
with exactly one space, and one signals that the suite is finished by entering an empty line
(without any space at all). Example:

>>> for c in wm.default_screen.clients.values():
... print c.get_title(), c.geometry()
...
xterm (516, 30, 502, 732, 3)
xterm (0, 30, 508, 732, 3)
WMManager (100, 0, 63, 71, 3)
emacs@sid.cendio.se (192, 18, 632, 744, 3)
>>>

Chapter 10: ToDo 36

10 ToDo

Known bugs:
•

None, right now. But there are probably still memory leaks, subversive behaviour and
smelly code here and there.

Fairly simple improvements:
• X resources: get rid of them. Or at least use Client/Screen/WindowManager attributes

in the first place, falling back on resources for backward compitability.
• modewin: Teach it to avoid overlapping texts. Currently it will only write overlapping

texts on top on each other, but it’d be nice if it was intelligent enough to shuffle the
texts around to avoid it.

• Being able to dynamically turn on and off debugging in a running plwm. Most of the
framework is there, it only needs some key bindings.

More advanced fixes and features:
• Improve inspection to allow pdb debugging.
• Provide a class which can represent the layout of the windows in such a way that one

can easily ask for things like "the window to the left of this window", "the first window
edge we run into moving this window upwards" or "the visible parts of this window".

• Real frames around the client windows. This requires reparenting the windows and
thus quite a number of modifications to wmanager.Client.

• Maybe some people would like mouse support?
• Other focus methods, such as click-to-focus.

Real out-of-this-time features:
• Support for controlling specific clients from the keyboard. Ex: pressing tab in a

Netscape window would move the pointer to the next hyperlink in the document. Up-
date: Okay, Netscape 6.1 actually have tabbing between links. There are probably still
uses for this idea, and the modification to keys in 2.3 was done to make this possible.

• Rewrite the whole thing as threaded collection of agents, or something. plwm is be-
ginning to feel quite bulky.

Misc stuff:
• Replace autoconf script with Distutils script. Or maybe a combination of both.
• Change the window script idea around, so that a small script is installed as plwm which

then simply sources ‘~/.plwm.py’.

Chapter 11: Credits 37

11 Credits

plwm was born late one night in the spring of 1999 when Peter Liljenberg and Morgan
Eklf, as our habit is, enjoyed music and conversation. After some general window manager
discussions and consensus on the beauty of using Python instead of yet another configuration
file language, the name "the Pointless Window Manager" popped up. It was so good that
we just had to implement it.

When it came to hacking, Peter was more inclined to let the work (or life) suffer and as
a result have written all of the code.

Henrik Rindlw has helped with ironing out bugs triggered in multiheaded environments.
By being the first other active user of plwm he has also found quite a number of more
normal bugs.

Our now former employer Cendio Systems (http://www.cendio.se/) deserves a para-
graph here. The employee contracts explicitly mentioned that we were allowed to develop
non-work-related GPL’d programs using the company’s computers in our spare time, and
keep the copyright. Nice. Now I can admit that quite a lot of work time also went into the
development...

Mike Meyer wrote the very interesting extension modules panes and menu, and the
corresponding example window manager plpwm.

Chapter 12: Contact Info 38

12 Contact Info

Bug reports, feature requests, new modules, bug fixes, etc, should go to Peter Liljenberg
<petli@ctrl-c.liu.se>.

New versions of plwm will be announced on the plwm website (http://plwm.sourceforge.net/)
and on Freshmeat (http://www.freshmeat.net/).

plwm is a SourceForge project. Mailinglists, bug tracking and public CVS access can
be found at the project page (http://sourceforge.net/project/plwm/).

